Радиация солнечная инфракрасная

Что такое солнечная радиация? Виды излучения и его влияние на организм

Что такое Солнце? В масштабах видимой Вселенной это – всего лишь крошечная звезда на окраине галактики, которая носит название Млечный Путь. Но для планеты Земля Солнце – не просто раскаленный сгусток газа, а источник тепла и света, необходимый для существования всего живого.

С доисторических времен дневное светило было объектом поклонения, его движение по небесной тверди ассоциировалось с проявлением божественных сил. Исследования Солнца и его излучения начались еще до принятия гелиоцентрической модели Николая Коперника, над его загадками ломали головы величайшие умы древних цивилизаций.

Технический прогресс подарил человечеству возможность изучить не только процессы внутри и на поверхности Солнца, но и изменения земного климата под его воздействием. Статистические данные позволяют дать четкий ответ на вопрос, что такое солнечная радиация, в чем она измеряется и определить ее влияние на живые организмы, населяющие планету.

Что называют солнечной радиацией

Природа солнечного излучения оставалась неясной до тех пор, пока в начале ХХ века выдающийся астроном Артур Эддингтон не предположил, что источником колоссальной солнечной энергии являются реакции термоядерного синтеза, которые происходят в его недрах. Температура вблизи его ядра (около 15 млн градусов) является достаточной для того, чтобы протоны преодолевали силу взаимного отталкивания и в результате столкновения образовывали ядра Гелия.

Впоследствии ученые (в частности – Альберт Эйнштейн) обнаружили, что масса ядра Гелия несколько меньше суммарной массы четырех протонов, из которых оно образуется. Этот феномен получил название дефекта масс. Проследив взаимосвязь массы и энергии, ученые обнаружили, что этот излишек выделяется в виде гамма-квантов.

При прохождении пути от ядра к поверхности Солнца через слои составляющих его газов, гамма-кванты дробятся и превращаются в электромагнитные волны, среди которых находится и видимый человеческому глазу свет. Этот процесс занимает около 10 млн лет. А для достижения солнечного излучения земной поверхности требуется всего 8 минут.

Солнечная радиация включает в себя электромагнитные волны с широким диапазоном и солнечный ветер, который представляет собою поток лёгких частиц и электронов.

Какие существуют виды солнечного излучения и его характеристики

На границе атмосферы Земли интенсивность солнечного излучения – постоянная величина. Энергия Солнца дискретна и переносится порциями (квантами) энергии, но их корпускулярный вклад относительно мал, поэтому солнечные лучи рассматриваются как электромагнитные волны, которые распространяются равномерно и прямолинейно.

Основной волновой характеристикой является длина волны, с помощью которой выделяют виды излучения:

  • радиоволны;
  • инфракрасное (тепловое);
  • видимый (белый) свет;
  • ультрафиолетовое;
  • рентгеновское;
  • гамма-лучи.

Солнечная радиация представлена инфракрасным (ИК), видимым (ВС) и ультрафиолетовым (УФ) излучением в соотношении 52%, 43% и 5% соответственно. Количественной мерой излучения Солнца считается энергетическая освещенность (плотность энергетического потока) – лучистая энергия, поступающая в единицу времени на единицу поверхности.

Распределение солнечной радиации по земной поверхности

Большая часть излучения поглощается атмосферой земли и нагревает ее до привычной для живых организмов температуры. Озоновый слой пропускает всего 1% ультрафиолетовых лучей и служит щитом от более агрессивного коротковолнового излучения.

Атмосфера поглощает около 20 % солнечных лучей, 30% рассеивает в разные стороны. Таким образом, на земную поверхность попадает только половина лучистой энергии, названная прямой солнечной радиацией.

На интенсивность прямого солнечного излучения влияет несколько факторов:

  • угол падения солнечных лучей (географическая широта);
  • расстояние от точки падения до Солнца (время года);
  • характер отражающей поверхности;
  • прозрачность атмосферы (облачность, загрязненность).

Рассеянное и прямое излучение составляют суммарную солнечную радиацию, интенсивность которой измеряется в калориях на единицу поверхности. Понятно, что солнечная радиация оказывает влияние только в дневное время суток и распределяется по земной поверхности неравномерно. Ее интенсивность увеличивает по мере приближения к полюсам, однако снега отражают большую долю лучистой энергии, в результате чего воздух не нагревается. Поэтому суммарный показатель уменьшается по мере отдаления от экватора.

Солнечная активность формирует климат Земли и воздействует на процессы жизнедеятельности организмов, которые ее населяют. На территории стран СНГ (в северном полушарии) в зимнее время года преобладает рассеянное излучение, в летнее – прямое.

Инфракрасное излучение и его роль в жизни человечества

Солнечная радиация представлена преимущественно инфракрасным излучением, невидимым человеческому глазу. Именно оно нагревает земную почву, которая впоследствии отдает тепло атмосфере. Таким образом, поддерживается оптимальная для жизни на Земле температура и привычные климатические условия.

Кроме Солнца источниками инфракрасного излучения являются все нагретые тела. По этому принципу работают все нагревательные приборы и устройства, которые позволяют разглядеть более или менее нагретые предметы в условиях плохой видимости.

То, что человек не в состоянии воспринимать инфракрасный свет, не уменьшает его влияния на организм. Этот вид излучения нашел применение в медицине благодаря таким свойствам:

  • расширение кровеносных сосудов, нормализация кровотока;
  • увеличение количества лейкоцитов;
  • лечение хронических и острых воспалений внутренних органов;
  • профилактика кожных заболеваний;
  • удаление коллоидных рубцов, лечение незаживающих ранений.

Инфракрасные термографы позволяют вовремя выявить заболевания, не поддающиеся диагностике с помощью других методов (тромбы, раковые опухоли и т.д.). Инфракрасное излучение является своеобразным «противоядием» от негативного ультрафиолета, поэтому его целительные свойства применяются для восстановления здоровья людей, длительное время пребывавших в космическом пространстве.

Механизм воздействия инфракрасных лучей полностью не изучен и, как и любой вид радиации, при неграмотном использовании может нанести вред здоровью человека. Противопоказано лечение с помощью ИК-лучей при наличии гнойных воспалений, кровотечений, злокачественных опухолей, недостаточности мозгового кровообращения и сердечно-сосудистой системы.

Спектральный состав и свойства видимого света

Световые пучки распространяются прямолинейно и не накладываются друг на друга, что порождает справедливый вопрос, почему окружающий мир поражает многообразием различных оттенков. Секрет заключается в основных свойствах света: отражении, преломлении и поглощении.

Доподлинно известно, что предметы не испускают свет, он частично поглощается ими и отражается под разным углом в зависимости от частоты. Человеческое зрение эволюционировало веками, однако сетчатка глаза способна воспринимать только ограниченный диапазон отраженного света в узком промежутке между инфракрасным и ультрафиолетовым излучением.

Изучение свойств света породило не только отдельную отрасль физики, но и ряд ненаучных теорий и практик, основанных на влиянии цвета на психическое и физическое состояние индивидуума. Оперируя этими знаниями, человек оформляет окружающее пространство в наиболее приятном для глаз цвете, что делает быт максимально комфортным.

Ультрафиолетовое излучение и его влияние на организм человека

Ультрафиолетовый спектр солнечного света состоит из длинных, средних и коротких волн, которые отличаются физическими свойствами и характером воздействия на живые организмы. Ультрафиолетовые лучи, которые относятся к длинноволновому спектру, преимущественно рассеиваются в атмосфере и не достигают поверхности земли. Чем меньше длина волны, тем глубже проникает ультрафиолет в кожные покровы.

Ультрафиолетовое излучение необходимо для поддержания жизни на Земле. На организм человека УФ-лучи оказывают следующее влияние:

  • насыщение витамином D, необходимым для формирования костной ткани;
  • профилактика остеохондроза и рахита у детей;
  • нормализация обменных процессов и синтеза полезных ферментов;
  • активация регенерации тканей;
  • улучшение кровообращения, расширение сосудов;
  • повышение иммунитета;
  • снятие нервного возбуждения за счет стимуляции выработки эндорфинов.

Несмотря на объемный перечень положительных качеств, солнечные ванны не всегда эффективны. Длительное пребывание на солнце в неблагоприятное время или в периоды аномально высокой солнечной активности сводит на нет полезные свойства УФ-лучей.

Ультрафиолетовое облучение в больших дозах имеет результат прямо противоположный ожидаемому:

  • эритему (покраснение кожи) и солнечные ожоги;
  • гиперемию, отечность;
  • повышение температуры тела;
  • головные боли;
  • нарушение функций иммунной и центральной нервной систем;
  • снижение аппетита, тошнота, рвота.

Эти признаки являются симптомами солнечного удара, при котором ухудшение состояния человека может происходить незаметно. Порядок действий при солнечном ударе:

  • переместить человека из зоны воздействия прямых солнечных лучей в прохладное место;
  • положить на спину и поднять ноги на возвышение, чтобы нормализовать кровообращение;
  • ополоснуть лицо и шею прохладной водой, желательно сделать компресс на лоб;
  • обеспечить возможность свободно дышать и избавить от тесной одежды;
  • в течение получаса дать напиться небольшим количеством чистой холодной воды.

В тяжелых случаях при потере сознания необходимо вызвать бригаду скорой помощи и по возможности привести пострадавшего в чувство. Медицинская помощь больному заключается в экстренном введении глюкозы или аскорбиновой кислоты внутривенно.

Правила безопасного загара

УФ-лучи стимулируют синтез особого гормона меланина, с помощью которого кожа человека темнеет и принимает бронзовый оттенок. Споры о пользе и вреде загара ведутся не одно десятилетие.

Доказано, что загар – это защитная реакция организма на облучение ультрафиолетом, а чрезмерное увлечения солнечными ваннами увеличивает риск возникновения злокачественных образований.

Если желание отдать дань моде преобладает, необходимо понимать, что такое солнечная радиация, как от нее защититься и следовать простым рекомендациям:

  • загорать постепенно исключительно в утреннее или вечернее время;
  • не находиться под прямыми солнечными лучами более часа;
  • наносить на кожу защитные средства;
  • пить больше чистой воды, чтобы избежать обезвоживания;
  • включить в рацион продукты, в которых содержится витамин Е, бета-каротин, тирозин и селен;
  • ограничить употребление алкогольных напитков.

Реакция организма на облучение ультрафиолетом индивидуальна, поэтому время для солнечных ванн и их длительность должны подбираться с учетом типа кожи и состояния здоровья человека.

Крайне противопоказан загар беременным, пожилым, людям с заболеваниями кожи, сердечной недостаточностью, психическими расстройствами и при наличии злокачественных образований.

Солнечная радиация – влияние на организм и меры защиты

Все что мы видим вокруг, материя, земля, вода, воздух — миллиарды лет назад появилось в недрах звезд. Мир вокруг нас существует благодаря небесным светилам и их дарам. Жизнь на Земле зародилась и существует благодаря энергии нашей звезды — Солнца. Вся энергия излучаемая Солнцем именуется солнечной радиацией.

Под радиацией, принято считать, ионизирующие излучения, сопровождающие ядерные и термоядерные реакции, оказывающие исключительно вредное и опасное воздействие на живые организмы. Солнечная радиация это более обширное понятие, включающее в себя совокупность материи, волнового и теплового излучения поступающих нам от светила. При ее недостатке, невозможно нормальное развитие и функционирование человеческого организма, избыток оказывает отрицательное воздействие и может быть губителен.

Состав солнечной радиации и ее виды

Солнечное излучение включает в себя электромагнитную и корпускулярную составляющие. Корпускулярное — это поток протонов, электронов и альфа-частиц обладающих большой энергией и образующих солнечный ветер. Поверхность планеты, надежно защищена от губительного воздействия, этого вида излучения, мощным магнитным полем порождаемым ядром Земли. Частицы прошедшие магнитный барьер задерживаются в верхних слоях атмосферы — ионосфере, вызывая красочную цветную феерию — полярное сияние. В сравнении с волновым излучением, энергия корпускулярного невелика и практически не оказывает влияния на биосферу Земли.

Электромагнитное солнечное излучение, в зависимости от длинны волны, подразделяется на:

  • гамма-излучение.
  • рентгеновское.
  • радиоволны.
  • инфракрасное — тепловое.
  • свет видимой глазом части спектра.
  • ультрафиолетовое.

Рентгеновское и гамма-излучение почти полностью рассеиваются в ионосфере, не достигают поверхности и существенного влияния на формирование климата не оказывают.

Основную роль в развитии жизни на Земле играет коротковолновая солнечная радиация — инфракрасное и ультрафиолетовое излучение, невидимая глазом часть спектра. Причем две трети от совокупности энергии солнца составляет тепло и видимый свет. На ультрафиолет приходится менее 9%, озоновый слой пропускает всего 1%, тем не менее, он является чрезвычайно важным для всех живых организмов. Благодаря ультрафиолетовому излучению идут процессы фотосинтеза в растениях и протекают сложные химические реакции органических соединений. Чрезмерное воздействие ультрафиолета губительно для всего живого.

Солнечную радиацию подразделяет на прямую и рассеянную. Прямая это половина всего излучения достигающего поверхности. Рассеянная — вторая половина, задерживаемая и поглощаемая атмосферой.

Как влияет на организм человека

Солнечная радиация необходима для жизнедеятельности человека. Однако все хорошо в меру, избыток излучения несомненно вреден и может быть опасен для здоровья.

Ультрафиолетовое излучение — невидимая человеческому глазу часть солнечного спектра. Поверхности земли достигает лишь небольшая его часть, с наиболее короткой длинной волны. В разумных пределах, оказывает исключительно положительное влияние на человека, а именно:

  • под влиянием ультрафиолета синтезируется витамин D, отвечающий за связывание соединений кальция и формирование костной ткани. Особенно это важно для развивающегося детского организма. При недостатке солнечного света, велик риск нарушения роста и развития рахита.
  • обладает бактерицидным действием, нормализует обмен веществ, укрепляет иммунную систему организма.
  • стимулирует выработку эндорфинов. Именно поэтому, в ясную солнечную погоду почти всегда хорошее настроение и отличное самочувствие.

Однако, превышение допустимых значений ультрафиолетового облучения, крайне опасно и вредно. Длительное пребывание на открытом воздухе в неблагоприятное время дня может вызвать солнечные ожоги, тепловые удары, способствует развитию онкологических заболеваний, изменению состава крови.

Видимая человеческому глазу часть спектра солнечной радиации позволяет получать 80% процентов информации о внешнем мире. Свет регулирует фазы бодрствования — сна, влияет на скорость обмена веществ, общее самочувствие, эмоциональное настроение.

Цветовая гамма, интенсивность освещения оказывают психофизиологическое воздействие на человека. Холодные оттенки синего и фиолетового угнетают активность организма, способствуют понижению артериального давления и сердечного ритма. Красный и теплые цвета, наоборот увеличивают скорость реакции, возбуждают центральную нервную систему. Средняя часть видимого спектра — оттенки зеленого и желтого, успокаивают, положительно влияют на работоспособность и настроение.

Недостаточная освещенность снижает эффективность зрительного аппарата, повышает утомляемость и угнетает эмоциональное состояние людей.

Инфракрасное излучение — является по сути тепловым. Невидимое глазу, именно оно играет решающую роль в формировании климатических условий на планете.

Влияние на человека заключается в создании температурного режима. Оптимальная комфортная температура внешней среды от +18 до 25С. При ее превышении повышается нагрузка на сердечно-сосудистую систему, снижается работоспособность и концентрация внимания. Понижение температуры, требует от человека дополнительных затрат на тепловую защиту. Влияет на психоэмоциональное состояние.

Инфракрасное излучение широко используется в медицине для диагностики и лечения различных заболеваний. Тепло активизирует защитные силы организма для борьбы с инфекциями.

Как защитить себя от солнечной радиации

Следует понимать, что главная защита от вредного воздействие радиации это ограничение времени пребывания под прямыми солнечными лучами. Принимать солнечные ванны можно только в утренние и вечерние часы, когда высота светила над горизонтом не велика и атмосфера земли, создает дополнительную защиту агрессивному излучению.

Использование солнцезащитных кремов, частично спасает кожу от ожогов, но не дает должного эффекта против уфльтрафиолета самого короткого диапазона.

Читайте также:  Вред запаха резины и ее токсичность

Поэтому, если нет возможности переждать полуденную жару в помещении, единственной надежной защитой, является использование одежды светлых оттенков, головного убора, солнцезащитных очков. Несмотря на высокую температуру воздуха, ткань должна закрывать большую часть тела и не допускать длительного контакта отдельных участков кожи с солнечным излучением.

Нужно помнить, что активное полуденное солнце опасно не только ожогами, но и прежде всего нарушением обмена веществ, сбоем общего гормонального фона, как следствие риском развития онкозаболеваний кожи и кроветворной системы организма.

На настоящий момент времени, доказано, что солнечный загар является защитной функцией кожи и никакого положительного эффекта в себе не несет. Поэтому нет ни какой необходимости рисковать здоровьем, ради сомнительной красоты. Человеческому организму, для поддержания необходимого уровня воздействия ультрафиолета, вполне достаточно одного часа утром на пляже, излучения получаемого в течение дня и вечерней прогулки.

Радиационный баланс и влияние радиации на климат

Рассеянная радиация вносит свой вклад в формирование климата на планете, однако, решающую роль играет прямая, достигающая земли и нагревающая ее. Поверхность, в свою очередь становится источником инфракрасного излучения, которое частично задерживается содержащимися в атмосфере парниковыми элементам — водяным паром, углекислым газом, пылью. Возникает эффект обмена энергией, когда излучене земли компенсируется противоизлучением атмосферы, который получил название радиационного баланса.

Радиационный баланс может быть как положительным, так и отрицательным. Летним днем, тепловая энергия накапливается у поверхности, приток ее больше чем рассеяние, что вызывает повышение температуры, увеличение концентрации водяного пара и соответственно увеличение парникового эффекта.

Зимой, когда угол падения прямых солнечных лучей низок, продолжительность дня уменьшается, поверхность нагревается менее интенсивно, радиационный баланс становится отрицательным, что вызывает понижение температуры. С наступлением заморозков, влажность воздуха резко снижается, потери тепловой энергии землей еще более увеличиваются. Температура начинает понижаться до очередной точки равновесия радиационного баланса.

На значение радиационного баланса и климат конкретного региона влияет географическая широта, из-за наклона оси вращения земли. Особенности рельефа, формирующие розу ветров, расстояние от побережья океана и морские течения.

Мы все существуем благодаря Солнцу и его энергии, однако нельзя забывать, что мир не статичен. На протяжении истории, условия на Земле неоднократно кардинально менялись, от ледниковых периодов до жарких тропиков. Воздействие солнечной радиации на жизнедеятельность человека и климат на планете носит решающий характер. Мы еще не научились управлять погодой и не до конца изучили механизмы формирования климата.

Поэтому, чтобы человек не оказался в роли очередного динозавра или мамонта, крайне необходимы дополнительные исследования в этой области.

Справочный материал по гигиене / многое по гигиене / про воздух и ультрафиолет / Солнечная радиация и ее гигиеническое значение

Общая гигиена. Солнечная радиация и ее гигиеническое значение.

Под солнечной радиацией мы понимаем весь испускаемый Солнцем поток радиации, который представляет собой электромагнитные колебания различной длины волны. В гигиеническом отношении особый интерес представляет оприческая часть солнечнечного света, которая занимает диапозон от 280-2800 нм. Более длинные волны — радиоволны, более короткие — гамма-лучи, ионизируещее излучение не доходят до поверхности Земли, потому что задерживаются в верхних слоях атмосферы, в озонов слое в частности. Озон распространен в всей атмосфере, но на высоте около 35 км формирует озоновый слой.

Интенсивность солнечной радиации зависит в первую очередь от высоты стояния солнца над горизонтом. Если солнце находится в зените, то путь который проходит солнечные лучи будет значительно короче, чем их путь если солнце находится у горизонта. За счет увеличения пути интенсивность солнечной радиации меняется. Интенсивность солнечной радиации зависит также от того под каким углом падают солнечные лучи, от этого зависит и освещаемая территория (при увеличении угла падения площадь освещения увеличивается). Таким образом, та же солнечная радиация приходится на большую поверхность, поэтому интенсивность уменьшается. Интесивность солнечной радиации зависит от массы воздуха через который проходит солнечные лучи. Интенсивность солнечной радиации в горах будет выше чем над уровнем моря, потому что слой воздуха через который проходят солнечные лучибудет меньше чем над уровнем моря. Особое значение представляет влияние на интенсивность солнечной радиации состояние атмосферы,ее загрязнение. Если атмосфера загрязнена, то интенсивность солнечной радиации снижается (в городе интенсивность солнечной радиации в среднем на 12% меньше чем в сельской местности). Напряжение солнечной радиации имеет суточный и годовой фон, то есть напряжение солнечной радиации меняется в течении суток, и зависит также от времени года. Наибольшая интенсивность солнечной радиации отмечается летом, меньшая — зимой. По своему биологическому действию солнечная радиация неоднородна: оказывается каждая длина волны оказывает различное действие на организм человека. В связи с этим солнечный спектр условно разделен на 3 участка:

ультрафиолетовые лучи, от 280 до 400 нм

видимый спектр от 400 до 760 нм

инфракрасные лучи от 760 до 2800 нм.

При суточном и годовом годе солнечной радиации состав и интенсивность отдельных спектров подвергается изменениям. Наибольшим изменениям подвергаются лучи УФ спектра.

Интенсивность солнечной радиации мы оцениваем исходя из так называемой солнечной постоянной. Солнечная постоянная — это количество солнечной энергии поступающей в единицу времени на единицу площади, расположенную на верхней границе атмосферы под прямым углом к солнечным лучам при среднем расстоянии Земли от Солнца. Эта солнечная постоянная измерена с помощью спутника и равна 1,94 калориисм 2 в мин. Проходя через атмосферу солнечные лучи значительно ослабевают — рассеиваются, отражаются, поглащаются. В среднем при чистой атмосфере на поверхности Земли интенсивность солнечной радиации составляет 1, 43 — 1,53 калориисм 2 в мин.

Напряжение солнечных лучей в полдень в мае в Ялте 1,33, в Москве 1,28, в Иркутске 1,30, В Ташкенте 1,34.

Биологическое значение видимого участка спектра.

Видимый участок спекра — специфический раздражитель органа зрения. Свет необходимое условие работы глаза, самого тонкого и чуткого органа чувств. Свет дает примерно 80% информации о внешнем мире. В этом состоит специфическое действие видимого света, но еще общебиологическое дйествие видимого света: он стимулирует жизнедеятельность организма, усиливает обмен веществ, улучшает общее самочувствие, влияет напсихофмоциональную сферу, повышает работоспосбность. Свет оздоравливает окружающую среду. При недостатке естественного осещения возникают изменения со стороны органа зрения. Быстро наступает утомляемость, снижается работоспособность, увеличивается производственный травматизм. На организм влияет не только освещенность, но и различная цветовая гамма оказывает различное влияние на психофмоциональное состояние. Наилучшие показатели выполнения работы были получены препарат желтом и белом освещении. В психофизиологическом отношении цвета действуют противоположно друг другу. Было сформировано 2 группы цветов в связи с этим: 1) теплые тона — желтый, оранжевый, красный. 2) холодные тона — голубой, синий, фиолетовый. Холодные и тепые тона оказывают разное физиологическое действие на организм . Теплые тона увеличивают мускульное напряжение, повышают кровянное давление, учащают ритм дыхания. Холодные тона наоборот понижают кровянное давление, замедляют ритм сердца и дыхания. Это часто используют на практике: для пациентов с высокой температурой больше всего подходят палаты окрашенные в лиловый цвет, темная охра улучшает сомочувствие больных с пониженным давлением. Красный цвет повышает аппетит. Более того эффективность лекарст можно повысить изменив цвет таблетки. Больным страдающим депрессивными расстройствами давали одно и то же лекарство в таблетках разного цвета: красного, желтого, зеленого. Самые лучшие результаты принесло лечение таблетками желтого цвета.

Цвет используется как носитель закодированной информации например на производстве для обозначенея опасности. Существует общепринятый стандарт на сигнально-опозновательную окраску : зеленый — вода, красный — пар, желтый — газ, оранжевый — кислоты, фиолетовый — щелочи, коричневый — горючие ждкости и масла, синий — воздух , серый — прочее.

С гигиенических позиций оценка видимого участка спектра проводится по следующим показателям: отдельно оценивается естественное и отдельно искусственно освещение. Естственное освещение оценивается по 2 группам показателей: физические и светотехнические. К первой группе относится :

световой коэффициет — характеризует собой отношение площади застекленной поверхности окон к площади пола.

Угол падения — характеризует собой под каким углом падают лучи. По норме минимальный угол падения должен быть не менее 27 0 .

Угол отверстия– характеризует освещенность небесным светом (должен быть не менее 5 0 ). На первых этажах ленинградских домов – колодцев этот угол фактически отсутсвует.

Глубина заложения помещения — это отношение расстояния от верхнего края окна до пола к глубине помещения (расстояние от наружной до внутренней стены).

Светотехнические показатели — это показатели определяемые с помощью прибора — люксметра. Измеряется абсолютная и относительная освещаемость. Абсолютная освещаемость — это освещаемость на улице. Коеффициент освещаемости (КЕО) определяется как отношение относительной освещаемости (измеряемой как отношение относительной освещенности (измеренной в помещении) к абсолютной, выраженное в %. Освещенность в помещении измеряется на рабочем месте. Принцип работы люксметра состоит в том что прибор имеет чувствительный фотоэлемент (селеновый – так как селен приближен по чувствительности к глазу человека). Ориентировочную освещаемость на улице можно узнать с помощью гра светового климата.

Для оценки исскуственного освещения помещений иеет значение яркость , отсутсвие пульсаций, цветность и др.

ИНФРАКРАСНЫЕ ЛУЧИ. Основное биологическое действие этих лучей — тепловое, причем это действие также зависит от длины волны. Короткие лучи несут больше энергии, поэтому они проникают в глубь, оказывают сильный тепловой эффект. Длинновлонвый участок оказывает свое тепловое действие на поверхности. Это используется в физиотерапии для прогрева участков лежащих на разной глубине.

Для того чтобы оценить измерить инфракрасные лучи существует прибор — актинометр. Измеряется инфракрасная радиация в калориях на см 2 мин. Неблагоприятное действие инфракрасных лучей наблюдается в горячих цехах, где они могут приводить к профессиональным заболеваниям — катаракте (помутнение хрусталика). Причиной катаракты является короткие инфракрасные лучи. Мерой профилактики является использование защитных очков, спецодежды.

Особенности воздействия инфракрасных лучей на кожу: возникает ожог — эритема. Она возникает за счет теплового расширения сосудов. Особенность ее состоит в том, что она имеет различные границы, возникает сразу.

В связи с действием инфракрасных лучей могут возникать 2 состояния организма: тпловой удар и солнечный удар. Солнечный удар – результат прямого воздействия солнечных лучей на тело человека в основном с поражением ЦНС. Солнечный удар поражает тех кто проводит много часов подряд под палящими лучами солнца с непокрытой головой. Происходит разогревание мозговых оболчек.

Тепловой удар возникает из-за перегревания организма. Он может случатся с тем кто выполняет тяжелую физическую работу в жарком помещении или при жаркой погоде. Особенно характерны были тепловые удары у наших военнослужащих в Афганистане.

Помимо актинометров для измерения инфракрасной радиации существуют пираметры различных видов. В основе ох действия — поглащение черным телом лучистой энергии. Воспринимающий слой состоит из зачерненных и белых пластинок, которые в зависимости от инфракрасной радиации нагреваются по разному. Возникает ток на термобатарее и регистрируется интенсивность инфракрасной радиации. Поскольку интенсивность инфракрасной радиации имеет значение в условиях производства то существуют нормы инфракрасной радиации для горячих цехов, для того чтобы избежать неблагоприятного воздействия на организм человека, например, в трубопрокатном цехе нарма 1,26 – 7,56, выплавка чугуна 12,25. Уровни излучения превышающие 3,7 считаются значительными и требуют проведения профилактических мероприятий — применение защитных экранов, водянные завесы, спецодежда.

УЛЬТРАФИОЛЕТОВЫЕ ЛУЧИ (УФ).

Это наиболее активная в биологическом плане часть солнечного спектра. Она также неоднородна. В связи с этим различают длиноволновые и коротковолновые УФ. УФ способствуют загару. При поступлении УФ на кожу в ней образуются 2 группы веществ: 1) специфические вещества, к ним относятся витамин Д, 2) неспецифические вещества — гистамин, ацетилхолин, аденозин, то есть это продукты расщепления белков. Загарное или эритемное действие сводится к фотохимическому эффекту — гистамин и другие биологически активные вещества способствуют расширению сосудов. Особенность этой эритемы — она возникает несразу. Эритема имеет четко ограниченные границы. Ультрофиолетовая эритема всегда приводит к загару более или менее выраженному, в зависимости от количества пигмента в коже. Механизм загарного действия еще недостаточно изучен. Считается что сначала возникает эритема, выделяются неспецифические вещества типа гистамина, продукты тканевого распада организм переводит в меланин, в результате чего кожа приобретает своеобразный оттенок. Загар, таким образом является проверкой защитных свойств организма ( больной человек не загорает, загорает медленно).

Самый благоприятный загарвозникает под воздействием УФЛ с длиной волны примерно 320 нм, то есть при воздействии длиноволновой части УФ-спектра. На юге в основном преобладают коротковолновые, а на севере — длиноволновые УФЛ. Коротковолновые лучи наиболее подвержаны рассеянию. А рассеивание лучше всего происходит в чистой атмосфере и в северном регионе. Таким образом, наиболее полезный загар на севере — он более длительный, более темный. УФЛ являются очень мощным фактором профилактики рахита. При недостатке УФЛ у детей развивается рахит, у взрослых — остепороз или остеомаляция. Обычно с этим сталкиваются на Крайнем Севере или у групп рабочих работающих под землей. В Ленинградской области с середины ноября до середины февраля практически отсутствует УФ часть спектра, что способствует развитию солнечного голодания. Для профилактики солнечного голодания используется искусственный загар. Световое голодание — это длительное отсутсвие УФ спектра. При действии УФ в воздухе происходит образование озона, за концентрацией которого необходим контроль.

УФЛ оказывают бактерицидное действие. Оно используется для обеззараживания больших палат, пищевых продуктов, воды.

Определяется интенсивность УФ радиации фотохимическим методом по количеству разложившийся под действием УФ щавелевой кислоты в кварцевых пробирках (обыкновенное стекло УФЛ не пропускает). Интенсивность УФ радиации определяется и прибором ультрафиолетметром. В медицинских целях ультрафиолет измеряется в биодозах.

Инфракрасные лучи: свойства, области применения, влияние на человека. Источники инфракрасного излучения

Инфракрасные лучи – это электромагнитные волны в невидимой области электромагнитного спектра, которая начинается за видимым красным светом и заканчивается перед микроволновым излучением между частотами 10 12 и 5∙10 14 Гц (или находится в диапазоне длин волн 1–750 нм). Название происходит от латинского слова infra и означает «ниже красного».

Применение инфракрасных лучей разнообразно. Они используются для визуализации объектов в темноте или в дыму, отопления саун и подогрева крыльев воздушных судов для защиты от обледенения, в ближней связи и при проведении спектроскопического анализа органических соединений.

Читайте также:  Запах от шубы: как избавиться?

Открытие

Инфракрасные лучи были обнаружены в 1800 г. британским музыкантом и астрономом-любителем немецкого происхождения Уильямом Гершелем. Он с помощью призмы разделил солнечный свет на составляющие его компоненты и за красной частью спектра с помощью термометра зарегистрировал увеличение температуры.

ИК-излучение и тепло

Инфракрасное излучение часто называют тепловым. Следует, однако, отметить, что оно является лишь его следствием. Тепло – это мера поступательной энергии (энергии движения) атомов и молекул вещества. «Температурные» датчики фактически измеряют не тепло, а только различия в ИК-излучении различных объектов.

Многие учителя физики инфракрасным лучам традиционно приписывают всю тепловую радиацию Солнца. Но это не совсем так. С видимым солнечным светом поступает 50% всего тепла, и электромагнитные волны любой частоты при достаточной интенсивности могут вызвать нагрев. Однако справедливо будет сказать, что при комнатной температуре объекты выделяют тепло в основном в полосе среднего инфракрасного диапазона.

ИК-излучение поглощается и испускается вращениями и вибрациями химически связанных атомов или их групп и, следовательно, многими видами материалов. Например, прозрачное для видимого света оконное стекло ИК-радиацию поглощает. Инфракрасные лучи в значительной степени абсорбируются водой и атмосферой. Хотя они и невидимы для глаз, их можно ощутить кожей.

Земля как источник инфракрасного излучения

Поверхность нашей планеты и облака поглощают солнечную энергию, большую часть которой в виде ИК-радиации отдают в атмосферу. Определенные вещества в ней, в основном пар и капли воды, а также метан, углекислый газ, оксид азота, хлорфторуглероды и гексафторид серы, поглощают в инфракрасной области спектра и переизлучают во всех направлениях, в том числе на Землю. Поэтому из-за парникового эффекта земная атмосфера и поверхность намного теплее, чем если бы вещества, поглощающие ИК-лучи, в воздухе отсутствовали.

Это излучение играет важную роль в теплопередаче и является неотъемлемой частью так называемого парникового эффекта. В глобальном масштабе влияние инфракрасных лучей распространяется на радиационный баланс Земли и затрагивает почти всю биосферную активность. Практически каждый объект на поверхности нашей планеты испускает электромагнитное излучение в основном в этой части спектра.

Области ИК-диапазона

ИК-диапазон часто разделяется на более узкие участки спектра. Немецкий институт стандартов DIN определил такие области длин волн инфракрасных лучей:

  • ближний (0,75-1,4 мкм), обычно используемый в волоконно-оптической связи;
  • коротковолновой (1,4-3 мкм), начиная с которого значительно возрастает поглощение ИК-излучения водой;
  • средневолновой, также называемый промежуточным (3-8 мкм);
  • длинноволновый (8-15 мкм);
  • дальний (15-1000 мкм).

Однако эта схема классификации не используется повсеместно. Например, в некоторых исследованиях указываются следующие диапазоны: ближний (0,75-5 мкм), средний (5-30 мкм) и длинный (30-1000 мкм). Длины волн, используемые в телекоммуникации, подразделяются на отдельные полосы из-за ограничений детекторов, усилителей и источников.

Общая система обозначений оправдана реакциями человека на инфракрасные лучи. Ближняя ИК-область наиболее близка к длине волны, видимой человеческим глазом. Среднее и дальнее ИК-излучение постепенно удаляются от видимой части спектра. Другие определения следуют различным физическим механизмам (таким как пики эмиссии и поглощение воды), а самые новые основаны на чувствительности используемых детекторов. Например, обычные кремниевые сенсоры чувствительны в области около 1050 нм, а арсенид индий-галлия – в диапазоне от 950 нм до 1700 и 2200 нм.

Четкая граница между инфракрасным и видимым светом не определена. Глаз человека значительно менее чувствителен к красному свету, превышающему длину волны 700 нм, однако интенсивное свечение (лазера) можно видеть примерно до 780 нм. Начало ИК-диапазона определяется в разных стандартах по-разному – где-то между этими значениями. Обычно это 750 нм. Поэтому видимые инфракрасные лучи возможны в диапазоне 750–780 нм.

Обозначения в системах связи

Оптическая связь в ближней ИК-области технически подразделяется на ряд полос частот. Это связано с различными источниками света, поглощающими и передающими материалами (волокнами) и детекторами. К ним относятся:

  • О-диапазон 1,260-1,360 нм.
  • Е-диапазон 1,360-1,460 нм.
  • S-диапазон 1,460-1,530 нм.
  • C-диапазон 1,530-1,565 нм.
  • L-диапазон 1,565-1,625 нм.
  • U-диапазон 1,625-1,675 нм.

Термография

Термография, или тепловидение – это тип инфракрасного изображения объектов. Поскольку все тела излучают в ИК-диапазоне, а интенсивность радиации увеличивается с температурой, для ее обнаружения и получения снимков можно использовать специализированные камеры с ИК-датчиками. В случае очень горячих объектов в ближней инфракрасной или видимой области, этот метод называется пирометрией.

Термография не зависит от освещения видимым светом. Следовательно, можно «видеть» окружающую среду даже в темноте. В частности, теплые предметы, в том числе люди и теплокровные животные, хорошо выделяются на более холодном фоне. Инфракрасная фотография ландшафта улучшает отображение объектов в зависимости от их теплоотдачи: голубое небо и вода кажутся почти черными, а зеленая листва и кожа ярко проявляются.

Исторически термография широко использовалась военными и службами безопасности. Кроме того, она находит множество других применений. Например, пожарные используют ее, чтобы видеть сквозь дым, находить людей и локализовать горячие точки во время пожара. Термография может выявить патологический рост тканей и дефекты в электронных системах и схемах из-за их повышенного выделения тепла. Электрики, обслуживающие линии электропередач, могут обнаружить перегревающиеся соединения и детали, что сигнализирует о нарушении их работы, и устранить потенциальную опасность. При нарушении теплоизоляции специалисты-строители могут увидеть утечки тепла и повысить эффективность систем охлаждения или обогрева. В некоторых автомобилях высокого класса тепловизоры устанавливаются для помощи водителю. С помощью термографических изображений можно контролировать некоторые физиологические реакции у людей и теплокровных животных.

Внешний вид и способ работы современной термографической камеры не отличаются от таковых у обычной видеокамеры. Возможность видеть в инфракрасном спектре является настолько полезной функцией, что возможность записи изображений часто является опциональной, и модуль записи не всегда доступен.

Другие изображения

В ИК-фотографии ближний инфракрасный диапазон захватывается с помощью специальных фильтров. Цифровые фотоаппараты, как правило, блокируют ИК-излучение. Однако дешевые камеры, у которых нет соответствующих фильтров, способны «видеть» в ближнем ИК-диапазоне. При этом обычно невидимый свет выглядит ярко-белым. Особенно это заметно во время съемки вблизи освещенных инфракрасных объектов (например, лампы), где возникающие помехи делают снимок блеклым.

Также стоит упомянуть Т-лучевую визуализацию, которая представляет собой получение изображения в дальнем терагерцовом диапазоне. Отсутствие ярких источников делает такие снимки технически более сложными, чем большинство других методов ИК-визуализации.

Светодиоды и лазеры

Искусственные источники инфракрасного излучения включают, помимо горячих объектов, светодиоды и лазеры. Первые представляют собой небольшие недорогие оптоэлектронные устройства, изготовленные из таких полупроводниковых материалов, как арсенид галлия. Они используются в качестве оптоизоляторов и в качестве источников света в некоторых системах связи на основе волоконной оптики. Мощные ИК-лазеры с оптической накачкой работают на основе двуокиси и окиси углерода. Они используются для инициации и изменения химических реакций и разделения изотопов. Кроме того, они применяются в лидарных системах определения дистанции до объекта. Также источники инфракрасного излучения используются в дальномерах автоматических самофокусирующих камер, охранной сигнализации и оптических приборах ночного видения.

ИК-приемники

К приборам обнаружения ИК-излучения относятся термочувствительные устройства, такие как термопарные детекторы, болометры (некоторые из них охлаждаются до температур, близких к абсолютному нулю, чтобы снизить помехи от самого детектора), фотогальванические элементы и фотопроводники. Последние изготавливаются из полупроводниковых материалов (например, кремния и сульфида свинца), электрическая проводимость которых увеличивается при воздействии инфракрасных лучей.

Обогрев

Инфракрасное излучение используется для нагрева – например, для отопления саун и удаления льда с крыльев самолетов. Кроме того, оно все чаще применяется для плавления асфальта во время укладки новых дорог или ремонта поврежденных участков. ИК-излучение может использоваться при приготовлении и подогреве пищи.

Связь

ИК-длины волн применяются для передачи данных на небольшие расстояния, например, между компьютерной периферией и персональными цифровыми помощниками. Эти устройства обычно соответствуют стандартам IrDA.

ИК-связь обычно используется внутри помещений в районах с высокой плотностью населения. Это наиболее распространенный способ дистанционного управления устройствами. Свойства инфракрасных лучей не позволяют им проникать сквозь стены, и поэтому они не взаимодействуют с техникой в соседних помещениях. Кроме того, ИК-лазеры используются в качестве источников света в оптоволоконных системах связи.

Спектроскопия

Инфракрасная радиационная спектроскопия – это технология, используемая для определения структур и составов (главным образом) органических соединений путем изучения пропускания ИК-излучения через образцы. Она основана на свойствах веществ поглощать определенные его частоты, которые зависят от растяжения и изгиба внутри молекул образца.

Характеристики инфракрасного поглощения и излучения молекул и материалов дают важную информацию о размере, форме и химической связи молекул, атомов и ионов в твердых телах. Энергии вращения и вибрации квантуются во всех системах. ИК-излучение энергии hν, испускаемое или поглощаемое данной молекулой или веществом, является мерой разности некоторых внутренних энергетических состояний. Они, в свою очередь, определяются атомным весом и молекулярными связями. По этой причине инфракрасная спектроскопия является мощным инструментом определения внутренней структуры молекул и веществ или, когда такая информация уже известна и табулирована, их количества. ИК-методы спектроскопии часто используются для определения состава и, следовательно, происхождения и возраста археологических образцов, а также для обнаружения подделок произведений искусства и других предметов, которые при осмотре под видимым светом напоминают оригиналы.

Польза и вред инфракрасных лучей

Длинноволновое ИК-излучение применяется в медицине с целью:

  • нормализации артериального давления путем стимуляции кровообращения;
  • очищения организма от солей тяжелых металлов и токсинов;
  • улучшения кровообращения мозга и памяти;
  • нормализации гормонального фона;
  • поддержания водно-солевого баланса;
  • ограничения распространения грибков и микробов;
  • обезболивания;
  • снятия воспаления;
  • укрепления иммунитета.

Вместе с тем ИК-излучение может нанести вред при острых гнойных заболеваниях, кровотечениях, острых воспалениях, болезнях крови, злокачественных опухолях. Неконтролируемое продолжительное воздействие ведет к покраснению кожи, ожогам, дерматиту, тепловому удару. Коротковолновые ИК-лучи опасны для глаз – возможно развитие светобоязни, катаракты, нарушений зрения. Поэтому для отопления должны применяться исключительно источники длинноволнового излучения.

ИНФРАКРАСНАЯ РАДИАЦИЯ

Видимые лучи — 400-760 нм;

Солнечная радиация и причины ее изменений. Биологическое действие солнечной радиации на окружающую среду и здоровье человека. Применение ультрафиолетового излучения в профилактических целях

Солнце — самая близкая к нам звезда — центральное тело нашей системы.

Условия жизни на Земле определяются исключительно энергией, получаемой от Солнца.

Диаметр Солнца составляет 1млн.390 тыс. км, т.е. в 109 раз больше Земли.

Площадь поверхности Солнца в 12000 раз больше площади Земли. Среднее расстояние Земли от Солнца немного меньше 150 млн. км. Давление в центре Солнца достигает 10 млрд. атмосфер, а температура — 26 млн. градусов С.

Солнце излучает в мировое пространство огромное количество энергии (4х1026 вт) в виде волнового и корпускулярного излучения. Примерно 400- миллионная доля этой энергии поступает на внешнюю границу атмосферы Земли, создавая облученность на перпендикулярной поверхности около 2 кал/см2 в минуту или 1396 вт/м2.

Все оптическое излучение Солнца состоит из ультрафиолетовой (УФ), видимой и инфракрасной (ИК) области спектра.

Интенсивность солнечного излучения зависит от:

1. Высоты стояния Солнца над горизонтом.Высота стояния Солнца над горизонтом зависит от географического расположения населенного пункта, времени года и суток. Так, при высоте 30° путь лучей в 2 раза длиннее, чем при 90°, а при закате — в 30 раз. Кроме того, солнечный поток падает на большую площадь.

2. Прозрачности атмосферы.Лучи с разной длиной волны по-разному проходят через атмосферу при наличии облаков. Ультрафиолетовые лучи рассеиваются, а инфракрасные — поглощаются. Озоновый слой в атмосфере резко сокращает количество коротких ультрафиолетовых лучей.

В городах интенсивность солнечной энергии в среднем ниже на 10-30% (в зимние месяцы на 60%), чем в прилегающих сельских районах, особенно коротковолновой части солнечного спектра (на 40-50%).

Солнечный поток достигает Земли в виде прямой и рассеянной радиации. Чем ниже высота стояния Солнца, тем относительно больше доля рассеянной радиации.

Все виды солнечного излучения, достигающие поверхности Земли (инфракрасное, видимое и ультрафиолетовое) имеют одинаковую физическую природу (электромагнитные волны), но отличаются длиной волны. Именно это отличие обуславливает особенности биологического действия каждой составляющей солнечного потока.

(слайд №13) Между энергией квантов любого ЭМ-излучения и частотой колебаний или длины волны существует определенная зависимость, выраженная формулой Планка: е = hf, где е – энергия кванта, f – частота колебаний, h – квантовая постоянная. Из формулы следует, что чем больше частота колебаний (или чем меньше длина волны), тем больший запас энергии несет квант излучения и тем больше будет выражена степень воздействия такого излучения на организм. Разные энергии ЭМ-излучений определяют и различие в их биологическом действии на организм.

(слайд №14) ГРАНИЦЫ СОЛНЕЧНОГО СПЕКТРА

Спектр Солнца, достигающий границ земной атмосферы, —от 0,1 до 60 мк.

1) Инфракрасные лучи (ИК) — от 0,76 до 60 мк (в этой области принято измерение в микронах);

3) Ультрафиолетовые лучи (УФ) — 10- 400 нм.

Характеристика потока различна по составу:

на границе атмосферы 5% 52% 43%

у поверхности Земли 1% 40% 59%

Биологическое действие солнечной радиации на организм слагается из совокупного воздействия всех областей оптического излучения: инфракрасной, видимой и ультрафиолетовой. Остановимся на разборе всех видов излучений.

Инфракрасные лучи были открыты Гершелем в 1800 г. Основное действие — тепловое. Доля инфракрасной радиации в общем потоке Солнца увеличивается при уменьшении высоты его над горизонтом.

Так, на экваторе при 90°— 48,8% от общего потока, а при 50° — до 67,9%. При подъеме на высоту интенсивность интегрального потока резко возрастает. ИК- радиация состоит из короткой (до 1,5 мк) и длинной (>1,5 мк) частей.

Длинные ИК-лучи задерживаются главным образом в эпидермисе кожи и вызывают нагревание ее поверхности, раздражают рецепторы (жжение).

Инфракрасная эритема образуется за счет расширения капилляров кожи, разлитая, без четких границ.

Короткие ИК-лучи проникают на глубину 2,5-4 см, вызывают глубокое прогревание, причем субъективные ощущения значительно меньше.

В настоящее время большинство исследователей признает не только тепловое, но и фотохимическое действие ИК-лучей на организм. Отмечается поглощение ИК-лучей белками крови и активация ферментных процессов.

Общее действие ИК-лучей — нагревание с образованием выраженной разлитой эритемы, с выделением ряда физиологически активных веществ (например, ацетилхолина), которые поступают в общий круг кровообращения и вызывают усиление обменных процессов в отдаленных от мест облучения тканях и органах. Общая реакция организма выражается в перераспределении крови в сосудах, повышении числа эозинофилов в периферической крови, повышении общей сопротивляемости организма. Подобные свойства ИК-излучения широко применяются в физиотерапии с помощью использования ИСКУССТВЕННЫх ИСТОЧНИКов ИК-ИЗЛУЧЕНИЯ:

Читайте также:  Как избавиться от пауков в частном доме доступными средствами

1. Общее облучение – ИК-ванна

2. Местное – Лампа Соллюкс, Лампа Минина

Не нашли то, что искали? Воспользуйтесь поиском:

Радиация солнечная инфракрасная

Ос­новными параметрами, характеризующими воздействие солнечной радиации, являются: спектральное распределение энергии излучения, а также интенсивность излучения, или поверхностная плотность пото­ка энергии излучения. Интенсивность солнечного излучения, характе­ризуемая солнечной энергией, приходящейся на единицу поверхнос­ти, перпендикулярной солнечным лучам на среднем расстоянии от Солнца вне земной атмосферы, называют солнечной постоянной Е.

Она зависит от степени поглощения и рассеяния радиации в атмос­фере. Рекомендуется значение суммарной радиации у земной поверх­ности при нахождении Солнца в зените принимать равным 1,12 кВт/м 2 . Отсюда следует, что для обеспечения эквивалентного теплового воз­действия необходимо скорректировать интенсивность искусственного источника Еех, таким образом, чтобы Еех = 1,12аesex, где аes — коэффициент поглощения изделием излучения искусственного ис­точника, зависящий от его спектрального распределения энергии излучения; аex — коэффициент поглощения изделием излучения сум­марной солнечной радиации, зависящей от ее спектрального распре­деления энергии.

Для проведения испытаний на воздействие солнечной радиа­ции необходимо в заданной плоскости измерения обеспечить излу­чение, воспринимаемое испытуемым изделием, с интенсивнос­тью 1,12 кВт/м 2 и определенным спектральным распределением энергии (табл. 1). В указанное значение интенсивности должны также входить излучения, полученные за счет отражения от стенок камеры, однако не должны входить инфракрасные излучения от на­греваемых стенок камер.

Наряду с рассмотренными к параметрам камер солнечной радиа­ции относятся: температура, скорость циркуляции воздуха и его от­носительная влажность. Температура воздуха в камере при облуче­нии во время темной фазы должна достигать 40 или 55 °С в зависимости от метода испытаний, воспроизводящего предполагаемые условия эк­сплуатации.

Спектральное распределение энергии излучения и допустимые отклонения

Длина волны, мкм

Интенсивность излучения, Вт/м 2

*Энергия излучения с длиной волны короче 0,30 мкм, достигающего земной поверхности, незначительна и ею можно пренебречь.

Поскольку для испытаний применяются камеры с принудительной циркуляцией воздуха, необходимо учитывать возмож­ность охлаждения изделий и термопреобразователей под действием воздушного потока. Даже столь малая скорость циркуляции воздуха, как, например, 1 м/с, может вызвать уменьшение температуры пе­регрева более чем на 20%.

В качестве искусственных источников солнечного излучения исполь­зуются одна или несколько специальных ламп, а также ряд оптичес­ких элементов (рефлекторов, светофильтров и т. д.), обеспечиваю­щих получение требуемого спектра и заданной интенсивности излучения. Источники излучения различаются по физической при­роде излучения. Они могут быть основаны на нагревании, на прин­ципе электролюминесценции, на одновременном использовании на­грева и электролюминесценции.

К источникам излучения, основанным на нагревании, относят­ся вольфрамовые лампы. Вакуумные или газонаполненные вольфрамо­вые лампы большую часть своей энергии излучают в области коротковолновых инфракрасных лучей и почти не излучают ультрафиолетовых лучей, что ограничивает их применение. Так, например, вакуумная лампа при температуре вольфрамовой нити Т = 2500 К имеет максимум излучения в области X = 1,15 мкм, а газонаполненная лампа при температуре нити Т= 3000 К — в области X = 0,96 мкм. Если принять всю энергию, излучаемую вакуумной лампой, за 100%, то только 7— 12% приходится на видимую часть спектра, а остальная часть, за исключением небольших потерь, излучается в виде инфракрасных лучей.

Лампы с вольфрамовой нитью в колбе из кварцевого стекла с галогенным наполнителем обладают лучшей стабильностью рабочих характеристик на протяжении всего срока службы. Поскольку в солнечном спектре приблизительно 50% энергии приходится на видимую и ультрафиолетовую части спектра, что соответствует длинам волн короче 0,7 мкм (рис. 1), использование вольфрамовых ламп целесообразно только в случаях, когда необходимо воспроизведение инфракрасного и теплового воздействий.

Рис. 1. Спектральное распределение излучения: 1 — вольфрамовой лам­пы накаливания; 2 — солнечной радиации, когда Солнце находится в зени­те; 3 — солнечной радиации при слабой облачности

В отличие от источников излучения, основанных на нагревании и дающих сплошной спектр, электролюминесцентные излучатели имеют прерывистый спектр. Они характеризуются высокоинтенсивным селективным излучением в очень узкой области спектра, зависящей от газового заполнения. Люминесценция представляет собой свечение, возникающее в процессе перехода различных видов энергии в энер­гию излучения вне зависимости от теплового состояния излучающего вещества, и поэтому люминесцентные излучатели называют источ­никами холодного света. Явление холодного свечения (электролюми­несценция) возникает при прохождении электрического тока через разреженный инертный газ или через пары ртути, при этом происхо­дят столкновения электронов и ионов в процессе их движения в элек­трическом поле. Указанное явление используется в газоразрядной труб­ке, представляющей собой стеклянный или кварцевый баллон, наполненный под давлением газом или парами некоторых металлов. В баллон впаиваются металлические электроды, к которым подводится напряжение, необходимое для возникновения разряда.

В испытательных камерах используются также ртутные лампы, называемые иногда ртутно-паровыми лампами, так как дуговой разряд происходит в парах ртути. В них наряду с электронным током возникает ионный ток, проходящий от анода к катоду. Однако, по­скольку скорость электронов значительно больше скорости ионов, плотность электронного тока больше, чем ионного, и поэтому об­щий разрядный ток ртутной дуги определяется в основном электрон­ным током. При возрастании плотности тока возникает ионизация.

В зависимости от давления паров ртути, при котором происхо­дит ртутно-дуговой разряд, различают лампы трех видов: низкого, высокого и сверхвысокого давления. Ртутные лампы низкого давле­ния являются электролюминесцентными излучателями, они обеспе­чивают излучение в ультрафиолетовой части спектра. В ртутных лам­пах высокого и сверхвысокого давления излучение происходит за счет ртутно-парового разряда, нагрева кварцевого стекла баллона, а так­же люминесценции. Эти лампы излучают главным образом в длин­новолновой инфракрасной (ИК) части спектра. Причем с ростом давления линейчатый спектр переходит в сплошной, что сопровож­дается относительным возрастанием излучения коротковолновых ин­фракрасных лучей. Ртутные лампы (особенно сверхвысокого давле­ния) характеризуются большим КПД, доходящим до 75%, малыми эксплуатационными расходами и большим сроком службы (до 8000 ч). К недостаткам можно отнести ограниченную возможность регулиро­вания режимов возникновения отказов вследствие конденсации па­ров при понижении температуры и т. д.

К люминесцентным относятся также и ксеноновые излучатели, обеспечивающие получение спектра, наиболее приближающегося к солнечному (рис. 2). Спектр излучения зависит от длины разряд­ных промежутков, мощности ламп, их геометрической формы и раз­меров. Так, при коротких разрядных промежутках относительная энергия излучения больше, чем при длинных, и она в большей сте­пени сосредоточена в ИК части спектра. Потребляемая мощность ксеноновых излучателей и эксплуатационные расходы весьма значи­тельны. Теоретический срок службы порядка 5000 ч.

Дуговые лампы основаны на использовании дугового разряда, об­разующегося между двумя угольными или графитовыми электрода­ми. Они позволяют получить спектр излучения, имеющий максимум 0,2 0,6 1,0 1,4 1,8 Х, мкм

Рис. 2. Спектральное распределение излучения: 1 — ксеноновой газораз­рядной лампы высокого давления; 2 — солнечной радиации, когда Солнце находится в зените; 3 — солнечной радиации при слабой облачности

в области коротковолновой части инфракрасного излучения (0,7— 0,8 мкм) и пик в начале ультрафиолетовой части спектра. Недостат­ками дуговых ламп являются постепенное затухание вольтовой дуги, приводящее к ограниченному времени непрерывной работы, а также недостаточная локализация и фиксация источника излучения.

Сравнение спектра солнечного излучения со спектрами ламп, применяемых для его имитации, показывает их недостаточное совпа­дение. В то время как солнечный свет дает приблизительно непре­рывный (сплошной) спектр, все искусственные источники имеют определенные спектральные линии. В связи с этим для получения необходимого спектра излучения применяют светофильтры, которые могут быть стеклянными и жидкостными, абсорбционными и интерфе­ренционными. Выбор светофильтра зависит от источника излучения и его использования. Предпочтение отдается стеклянным фильтрам. К недостаткам стеклянных фильтров можно отнести неодинаковую оптическую плотность стекол, тенденцию к изменению спектраль­ных характеристик под воздействием интенсивного ультрафиолетово­го излучения.

Стеклянные адсорбционные фильтры основаны на способности ряда оптических материалов к избирательному поглощению в одной или нескольких областях спектра излучения. Примерами таких фильтров являются фильтры из цветных оптических стекол, окрашенных плас­тмасс, а также ряда других оптических материалов. Недостатки ука­занных фильтров — малая контрастность и крутизна фронтов спект­ральной характеристики.

В ряде случаев находят применение многослойные стеклянные ин­терференционные светофильтры, действие которых основано на ин­терференции лучей, многократно отражающихся и проходящих через тонкие слои прозрачных материалов. Подбирая показатели прелом­ления, толщины и число этих слоев, можно получать различные све­тофильтры с почти произвольными спектральными свойствами. Ин­терференционные фильтры меньше нагреваются и обычно более стабильны, чем абсорбционные.

Хорошие результаты дает комбинация интерференционных и абсор­бционных светофильтров. Таким образом, спектр излучения ксено­новой лампы может быть откорректирован с помощью комбинации абсорбционных светофильтров для инфракрасной и ультрафиолето­вой областей.

Большая удаленность Солнца от Земли приводит к тому, что сол­нечные лучи падают на земную поверхность параллельно, в то время как искусственные источники излучения находятся на сравнительно близком расстоянии от поверхности испытуемого изделия и не обес­печивают аналогичного направления лучей. Вследствие этого для обеспечения равномерного распределения интенсивности излучения в плоскости измерения необходимо применение рефлектора в виде параболического вогнутого зеркала. При этом важное значение име­ет конструкция используемой лампы. Так, при использовании ксе­ноновой лампы возможно образование теней от ее электродов и опор. Иногда для обеспечения равномерности облучения используют ксе­ноновую лампу с длинным разрядным промежутком, укрепленную в желобообразном параболическом рефлекторе (рис. 3).

Источники излучения в камерах солнечной радиации рекоменду­ется размещать вне их рабочего объема, за специальным остеклени­ем, с одной стороны, исключающим воздействие на изделие боль­шого количества теплоты, выделяемой лампами, и загрязнение испытуемых изделий озоном, образующимся в результате ультрафио­летового (УФ) излучения ксеноновых, дуговых и других ламп, а с другой стороны, уменьшающим воздействие повышенной влажнос­ти в испытательной камере на оптические элементы. Попадание озо­на и других газов в рабочий объем камеры может оказывать значи­тельное влияние на процессы деградации некоторых материалов.

Рис. 3. Излучатель, имитирующий солнечное излучение: 1 — излучения ультрафиолетового и видимого спектра; 2 — ИК излучение; 3 — ксеноновая лампа; 4 — зеркало УФ излучения; 5 — зеркало излучения видимого спектра; 6 — оболочка из кварцевого стекла с избирательно отражающим слоем ИК излучения; 7— дополнительный фильтр УФ излучения; 8— параболический рефлектор; 9 — образцовая поверхность

Методы испытаний на воздействие солнечного излучения. Испы­тания на воздействие солнечного излучения проводят для определения его влияния на тепловые, механические, химические, электрохими­ческие и другие явления, происходящие в испытуемых изделиях.

В нормативной документации на изделие необходимо указывать способы установки его в камеру (на опорных стойках либо на основа­нии, обладающем определенной теплопроводностью), обеспечива­ющие необходимое положение относительно направления излучения. Действие сол­нечного облучения на испытуемое изделие существенно зависит от состояния его поверхности, определяющего характер поглощения, поэтому необходимо, чтобы оно отвечало требованиям испытаний, например отсутствию загрязнений поверхности (масляных пленок, ПЫЛИ И Т. Д.).

После стабилизации изделия в нормальных климатических усло­виях в течение заданного времени его тщательно осматривают и из­меряют значения определенных параметров, стабильность которых зависит от воздействия солнечной радиации.

Изделие устанавливают в камеру в положение, при котором наи­более уязвимые элементы его конструкции будут обращены к источ­никам излучения. При этом должна исключаться возможность экра­нирования излучения источника или отраженного излучения.

В зависимости от цели испытаний находят применение три ме­тода их проведения (рис. 4).

Метод А (рис. 4, а) применяется, когда основной интерес представляют результаты теплового воздействия. Метод характеризу­ется 24-часовым циклом, состоящим из 8-часовой фазы облучения и 16-часовой темновой фазы. За указанный период времени обеспечи­вается получение изделием дозы облучения 8,96 кВт/м 2 , что прибли­жается к наиболее жестким естественным условиям. Температура воз­духа в камере должна повышаться за 2 ч до начала фазы облучения. Увеличение фазы облучения свыше 8 ч ускоряет воздействие радиа­ции по сравнению с естественными условиями.

Рис. 4. Режимы облучения и температуры при трех методах испытаний на воздействие солнечной радиации

Продолжительность испытаний (число циклов) зависит от габаритных размеров и массы испытуемых изделий. В общем случае рекомендуются три цикла ис­пытаний, однако при испытаниях крупногабаритных изделий требу­ется увеличить число циклов для достижения максимальной внутрен­ней температуры и выявления процессов деградации.

Метод В (рис. 4, б) применяется, когда основной интерес пред­ставляют процессы деградации. Метод характеризуется 24-часовым цик­лом, который состоит из 20-часовой фазы облучения и 4-часовой тем — новой фазы. При этом доза облучения составляет 22,4 кВт/м 2 за цикл.

Известно, что фотохимические процессы деградации материа­лов, красок, пластмасс зависят также от влажности окружающей среды, поэтому иногда в начале 20-часовой фазы облучения возмож­но одновременное воздействие влажного тепла (относительная влаж­ность 93±3% при t = 40±2 °С).

Метод С (рис. 4, в) применяется, когда необходимо оценить только фотохимический эффект, а циклические тепловые нагрузки не имеют значения. Метод характеризуется непрерывным 24-часо­вым облучением и считается упрощенным. При этом методе могут быть не выявлены процессы деградации, обусловленные цикличес­кими тепловыми нагрузками.

При реализации всех трех методов интегральная поверхностная плотность потока излучения должна быть равна 1,120 кВт/м 2 + 10% (в том числе поверхностная плотность потока ультрафиолетовой части спектра 68 Вт/м 2 ). Спектральное распределение должно соответство­вать данным, указанным в табл. 6.5.

Во время фазы облучения температуру воздуха в камере повыша­ют приблизительно с постоянной скоростью и поддерживают на уровне 40 или 55 °С с точностью ±2 °С. При проведении испытаний с одно­временным воздействием влажности необходимо указывать период, в течение которого она должна поддерживаться: а) во время фаз об­лучения; б) в период темновых фаз; в) в течение всей продолжитель­ности испытаний.

Продолжительность испытаний (число циклов) зависит от цели испытаний, ее рекомендуют выбирать из следующего ряда: 3, 5, 10, 56 циклов. Сокращать продолжительность испытаний за счет увели­чения поверхностной плотности потока (интенсивности) излучения не рекомендуется.

В нормативной документации на изделие следует указывать, дол­жно ли оно функционировать в процессе испытаний и значения ка­ких параметров необходимо измерять.

В случаях, когда требуется проводить испытания солнечных ба­тарей, систем слежения за Солнцем и других изделий, предназна­ченных для космических исследований, необходимо обеспечение точной коллимации лучей от излучателя (т. е. оптическая ось рефлектора должна составлять прямой угол с поверхностью изделия).

Ссылка на основную публикацию