Щелочные металлы фосфаты

Фосфор, его соединения: . фосфаты щелочных металлов – C01B 25/30

Патенты в данной категории

Изобретение может быть использовано в химической промышленности и электронике. Фосфат лития-железа оливинового типа состоит из вторичных частиц, имеющих средний диаметр частиц (D50) от 5 до 100 мкм, образованных за счет агрегации первичных частиц, имеющих средний диаметр частиц (D50) от 50 до 550 нм. Фосфат лития-железа имеет состав, представленный формулой Li 1+a Fe 1-x M x (PO 4-b )X b , в которой М выбран из Аl, Mg, Ni, Co, Mn, Ti, Ga, Сu, V, Nb, Zr, Се, In, Zn, Y и их комбинаций, X выбран из F, S, N, при этом -0,5 а +0,5, 0 x 0,5 и 0 b 0,1. Вторичные частицы имеют пористость от 15 до 40%. Заявленный фосфат лития-железа используется в качестве катодного активного материала. Предложенное изобретение позволяет получить фосфат лития-железа, обладающий высокой электропроводностью и прочностью, тем самым увеличить емкость и плотность энергии электродов и батарей. 4 н. и 16 з.п. ф-лы, 8 ил., 4 табл.

2488550
патент выдан:
опубликован: 27.07.2013ФОСФАТ ЛИТИЯ-ЖЕЛЕЗА СО СТРУКТУРОЙ ОЛИВИНА И СПОСОБ ЕГО АНАЛИЗА

Изобретение может быть использовано в химической промышленности. Фосфат лития-железа с кристаллической структурой оливина имеет состав, выраженный химической формулой (I) L 1+a Fe 1-x M x (PO 4-b )X b (где М выбран из Al, Mg, Ti; X выбран из F, S, N; – 0,5 а +0,5; 0 х 0,5; и 0 b 0,1), содержит 0,1-5 мас.% Li 3 PO 4 и не содержит или содержит менее 0,25 мас.% Li 2 CO 3 . Содержание Li 3 PO 4 в составе фосфата лития-железа повышает электрохимическую стабильность и обеспечивает термическую безопасность и ионную проводимость. Фосфат лития-железа по настоящему изобретению может использоваться в качестве активного материала положительного электрода для вторичной литиевой батареи. 5 н. и 10 з.п. ф-лы, 1 табл., 5 ил.

2484009
патент выдан:
опубликован: 10.06.2013СПОСОБ ИЗВЛЕЧЕНИЯ ФОСФОРА ИЗ ЖЕЛЕЗОСОДЕРЖАЩИХ ОТХОДОВ ПЕРЕРАБОТКИ ВЯТСКО-КАМСКИХ ФОСФОРИТОВ

Способ утилизации фосфора из железосодержащих отходов, образующихся при азотнокислотной переработке вятско-камских фосфоритов, в удобрения по азотнокислотной технологии, включает обработку отходов смесью азотной и серной кислот, отделение полученного сульфата кальция фильтрованием, введение в оставшийся раствор раствора NaOH, доведение рН до значений не менее 12, отделение осадка гидроокиси железа (III) фильтрованием и возвращение оставшегося раствора, содержащего фосфат натрия, в процесс получения удобрений. Полученный раствор содержит фосфат натрия без соединений железа, а осадок представляет собой гидроксид железа, содержащий соединения фосфора в количестве 1-1,5% от взятого для переработки. Способ позволяет извлекать фосфор из отходов азотнокислотной переработки вятско-камских фосфоритов с получением полезного продукта, пригодного для использования в процессах получения удобрений. 1 табл.

2375334
патент выдан:
опубликован: 10.12.2009СПОСОБ ПОЛУЧЕНИЯ ТРИНАТРИЙФОСФАТА

Изобретение относится к технологии получения неорганических соединений фосфора, а именно к способу получения тринатрийфосфата (ТНФ) из экстракционной фосфорной кислоты. Способ получения тринатрийфосфата включает нейтрализацию фосфорной кислоты кальцинированной содой, разделение раствора и осадка примесных компонентов, нейтрализацию отделенного раствора гидроксидом натрия при pH=11,5-12,0 с получением раствора тринатрийфосфата, его последующим охлаждением, кристаллизацией готового продукта и отделением маточника кристаллизации, при этом нейтрализацию фосфорной кислоты кальцинированной содой ведут сначала до образования раствора, содержащего 12-14% мононатрийфосфата и 27-30% динатрийфосфата, при температуре 55-52°С, а затем добавляют кальцинированную соду до получения раствора динатрийфосфата с концентрацией 40-42%. Целесообразно на стадию нейтрализации отделенного раствора гидроксидом натрия вводить маточник кристаллизации. Способ позволяет повысить степень извлечения P 2 O 5 , улучшить качество продукта и повысить технологичность процесса за счет повышения производительности стадии фильтрации. 1 з.п. ф-лы, 3 табл.

2372282
патент выдан:
опубликован: 10.11.2009СПОСОБ ПОЛУЧЕНИЯ БЕЗВОДНОГО МОНОНАТРИЙФОСФАТА

Изобретение относится к технике получения мононатрийфосфата нейтрализацией фосфорной кислоты содой в присутствии насыщенного раствора мононатрийфосфата с изотермической кристаллизацией мононатрийфосфата в ходе нейтрализации кислоты. Способ получения безводного мононатрийфосфата заключается в нейтрализации фосфорной кислоты содой в две ступени в присутствии насыщенного раствора мононатрийфосфата в виде возвратного маточного раствора с подачей на первой ступени 0,45 части фосфорной кислоты с последующей выдержкой в течение 30 минут, а на второй стадии с равномерной подачей остальной 0,55 части в течение 80 минут. Применение способа позволяет повысить экономичность процесса и снизить долю примесей мышьяка в продукте в 1,6 раза, тяжелых металлов в 1,2 раза.

2340549
патент выдан:
опубликован: 10.12.2008СПОСОБ ПОЛУЧЕНИЯ ДЕСЯТИВОДНОГО ТРИНАТРИЙФОСФАТА

Изобретение относится к технике получения трехзамещенного фосфата натрия нейтрализацией фосфорной кислоты содой до динатрийфосфата и гидроксидом натрия до тринатрийфосфата, выделением кристаллов тринатрийфосфата после охлаждения нейтрализованного раствора. Способ заключается в нейтрализации раствора динатрийфосфата первоначально насыщенным раствором тринатрийфосфата при температуре 60-65°С до соотношения Na 2 O/Р 2 О 5 =2,3-2,5, а затем при температуре 70-80°С раствором гидроксида натрия и выделении тринатрийфосфата охлаждением нейтрализованного раствора со скоростью 7-9 град./час до температуры 53°С. Применение способа позволяет увеличить скорость фильтрации суспензии фосфата и соответственно производительность процесса в 1,2-1,4 раза, производительность фильтрации в 1,4-1,5 раза и повысить содержание Р 2 O 5 в продукте до 20,3-20,6 мас.%. 1 табл.

2275328
патент выдан:
опубликован: 27.04.2006СПОСОБ ПОЛУЧЕНИЯ МОНОКАЛИЙФОСФАТА

Изобретение относится к способу получения монокалийфосфата, используемого в качестве удобрений, пищевых добавок, а также в медицине и микробиологии. Способ включает нейтрализацию фосфорной кислоты карбонатом калия до рН не выше 4,5 при повышенной температуре, разделение полученной смеси фильтрацией с последующей кристаллизацией и отделением готового продукта при охлаждении. Карбонат калия берут в виде водного раствора с концентрацией, необходимой для получения в нейтрализованной смеси 23-30% монокалийфосфата, процесс нейтрализации ведут при температуре 70-78°С, а маточный раствор после отделения готового продукта на стадии кристаллизации возвращают в процесс на стадию растворения карбоната калия. Реакцию нейтрализации ведут до рН 3,8-4,5. Технический результат заключается в повышении выхода готового продукта до 95-97% и создании безотходного производства за счет использования маточного раствора в процессе. 1 з.п. ф-лы.

2261222
патент выдан:
опубликован: 27.09.2005ПОЛУЧЕНИЕ ДВУХ СОЛЕЙ ЩЕЛОЧНЫХ МЕТАЛЛОВ ПОСРЕДСТВОМ КОМБИНИРОВАННОГО СПОСОБА ИОННОГО ОБМЕНА И КРИСТАЛЛИЗАЦИИ

Изобретение относится к способу получения нитрата щелочного металла и фосфата щелочного металла в одном и том же технологическом процессе из фосфатного сырья и нитратного сырья, включающий следующие этапы: а) взаимодействие фосфатного сырья с нитратным сырьем с образованием водной нитрофосфатной реакционной смеси, с последующим необязательным отделением твердого материала, б) введение водной нитрофосфатной реакционной смеси на этап первого ионного обмена, осуществляемого при наличии насыщенной ионами щелочного металла катионообменной смолы, для обмена катионов, присутствующих в реакционной смеси, на ионы щелочного металла, присутствующие в этой смоле, с получением потока, обогащенного ионами щелочного металла, в) осуществление первой кристаллизации потока, получаемого на этапе (б), при условиях, обеспечивающих кристаллизацию нитрата щелочного металла, и отделение кристаллизованного нитрата щелочного металла от маточного раствора, г) введение маточного раствора, образующегося на этапе (в), на этап второго ионного обмена, осуществляемого при наличии насыщенной ионами щелочного металла катионообменной смолы, для обмена катионов, присутствующих в маточном растворе, на ионы щелочного металла, присутствующие в этой смоле, с получением потока, содержащего фосфат, обогащенного ионами щелочного металла, и д) осуществление второй кристаллизации потока, получаемого на этапе (г), при условиях, обеспечивающих кристаллизацию фосфата щелочного металла, и отделение кристаллизованного фосфата щелочного металла от маточного раствора. Заявленный способ эффективен с максимальным использованием сырья или минимальном количестве отходов, требует меньших затрат энергии. 14 з.п. ф-лы, 6 табл., 2 ил.

Большая Энциклопедия Нефти и Газа

Фосфаты – щелочной металл

Фосфаты щелочных металлов имеют сильнощелочную реакцию. При той же концентрации раствор Na2HPO4 имеет рН9 9, а раствор NaH2PO4 имеет рН4 б ( см. табл. 15, стр. [1]

Фосфаты щелочных металлов имеют сильнощелочную реакцию. При той же концентрации раствор Na2HPO4 имеет рН9 9, а раствор NaH2PO4 имеет рН4 6 ( см. табл. 15, стр. [2]

Фосфаты щелочных металлов легко растворимы в воде. Фосфаты всех других металлов в воде трудно растворимы, но легко растворимы в разбавленных минеральных кислотах, а также, исключая FePO. [3]

Фосфаты щелочных металлов NaH2PO4, Na2HPO4 широко используются в молочной и особенно в мясной промышленности. Они являются стабилизаторами животной крови; их роль при этом сводится к выделению из крови ионов кальция Са2, которые способствуют нежелательному свертыванию крови. Фосфаты стабилизируют влагоудерживающую способность мяса и обеспечивают этим увеличение выхода мясных изделий, придают им вкус и нежность. Фосфаты используются в молочной промышленности при изготовлении сыров и майонезов. Ортофосфат натрия МазРО4 входит в состав моющих средств, применяемых в молочной промышленности. [4]

Фосфаты щелочных металлов являются менее эффективными ингибиторами, чем нитриты и хроматы. Однако фосфаты широко используются для защиты паровых котлов от коррозии, так как при добавлении фосфатов к воде значительно уменьшается образование котельной накипи. В этом разделе книги будут рассмотрены минеральные фосфаты. Органические фосфаты, применяемые для защиты металлов от коррозии в неводных растворах, описываются в VI главе. [5]

Фосфаты щелочных металлов и аммония растворимы в воде. Растворимы также дигидрофосфаты щелочноземельных металлов. Остальные фосфаты нерастворимы в воде, но растворимы в минеральных кислотах. [6]

Фосфаты щелочных металлов ( Li3P и Na3P) имеют структуру типа мышьяковистого натрия; она примерно антиизоморфна по отношению к тизониту. [7]

Фосфаты щелочных металлов обычно получают обработкой фосфорной кислоты гидроокисью щелочного металла с таким расчетом, чтобы получился раствор нужного состава. Раствор затем концентрируют кипячением при определенном контролируемом давлении, которое определяет температуру кипения. Если имеется опасность образования других гидратов или соединений другого состава за пределами выбранного температурного режима, отделение кристаллов от маточной жидкости нужно производить при контролируемой температуре. Следует соблюдать осторожность также при промывании кристаллов водой, так как некоторые фосфаты инконгру-энтно растворяются с образованием более основных солей. Например, при контакте однозамещенного фосфата лития с водой часть его разлагается с образованием трехзамещенного фосфата лития и фосфорной кислоты. [8]

Фосфаты щелочных металлов являются менее эффективными ингибиторами, чем нитриты и хроматы. Однако при применении фосфатов значительно уменьшается образование накипи в теплообменнной аппаратуре и паровых котлах. Наиболее распространено применение трех – и двухзамещен-ных фасфатов натрия и гексаметафосфата. [9]

Фосфаты щелочных металлов готовят обычно, прибавляя соответствующее количество фосфорной кислоты к растворам гидроокисей или карбонатов. Нерастворимые фосфаты получают в большинстве случаев из растворимых путем двойного обмена. [10]

Читайте также:  Плетение шнуров из ниток различными способами - Ярмарка Мастеров - ручная работа, handmade

Первичные, вторичные и третичные фосфаты щелочных металлов и фосфаты аммония ( NH4H2PO4; ( NH4) 2HPO4; ( NH4) 3PO4) хорошо растворимы в воде. Из фосфатов остальных металлов растворимы в воде лишь первичные соли. [11]

Первичные, вторичные и третичные фосфаты щелочных металлов и фосфаты аммония ( NH4H2PO4; ( NH4) 2HPO4; ( МН4) зРО4) хорошо растворимы в воде. Из фосфатов остальных металлов растворимы в воде лишь первичные соли. [12]

Первичные, вторичные и третичные фосфаты щелочных металлов и фосфаты аммония ( NH4HaPO4; ( NH4) 2HPO4; ( NH4) 3PO4) хорошо растворимы в воде. Из фосфатов остальных металлов растворимы в воде лишь первичные соли. [13]

Все фосфаты щелочных металлов и аммония растворимы в воде. [14]

Все фосфаты щелочных металлов и аммония растворимы в воде. В воде фосфаты других металлов первичные растворимы, вторичные плохо растворимы и третичные в ней не растворяются. Следовательно, наличие Н в солях способствуют усилению их растворимости в воде. [15]

Оксиды фосфора. Фосфорная кислота

Фосфор образует очень большое число различных оксидов и кислот. Среди них наиболее устойчивыми являются оксид фосфора (V) и соответствующая ему ортофосфорная, или фосфорная, кислота Н3РО4.

Оксид фосфора (V), или фосфорный ангидрид Р2О5 – белый порошок, без запаха. По своему характеру является типичным кислотным оксидом. При растворении в воде гидратируется с образованием следующих кислот:

Как кислотный оксид Р2О5 взаимодействует с основаниями и основными оксидами, например:

При взаимодействии Р2О5 со щелочами в зависимости от соотношения реагентов могут образовываться не только средние, но и кислые соли:

Хотя в Р2О5 фосфор имеет высшую степень окисления +5, оксид фосфора (V) не проявляет сколько-нибудь выраженных окислительных свойств, так как эта степень окисления для фосфора очень устойчива.

Оксид фосфора (V) является прекрасным водопоглощающим и водоотнимающим средством. На этом основано его использование в эксикаторах (сосудах для высушивания веществ), при проведении реакций дегидратации и т.д.

Фосфорная кислота

Фосфорная (ортофосфорная) кислота Н3РО4 – бесцветное кристаллическое вещество, плавящееся при температуре 42 о С, очень хорошо растворимое в воде. Фосфорная кислота является трёхосновной кислотой средней силы.

В лаборатории её получают окислением фосфора разбавленной азотной кислотой.

В промышленности Н3РО4 получают экстракционным методом, обрабатывая природные фосфаты серной кислотой:

а также термическим методом, восстанавливая природные фосфаты до свободного фосфора, который затем сжигают и образующийся при этом Р2О5 растворяют в воде.

Фосфорная кислота обладает всеми общими свойствами кислот, но она значительно слабее таких кислородсодержащих кислот, как серная и азотная. В отличие от этих кислот фосфорная кислота не обладает даже значительными окислительными свойствами, несмотря на устойчивость степени окисления +5.

Применение фосфорной кислоты

Помимо производства удобрений, фосфорную кислоту используют при изготовлении реактивов, многих органических веществ, для получения катализаторов, для создания защитных покрытий на металлах, в фармацевтической промышленности и т.д.

Соли фосфорной кислоты

Как трёхосновная кислота Н3РО4 образует три ряда солей: средние (нормальные) соли – фосфаты; кислые соли – гидрофосфаты и дигидрофосфаты.

Например, при нейтрализации фосфорной кислоты гидроксидом натрия в зависимости от молярного соотношения кислоты и щёлочи могут идти следующие реакции:

Большинство средних солей – фосфатов – нерастворимо в воде. Исключением являются лишь фосфаты щелочных металлов и аммония. Многие же кислые соли фосфорной кислоты, хорошо растворяются в воде, причем наиболее растворимыми являются дигидрофосфаты.

Фосфорные удобрения

Фосфор, как и азот, является одним из тех элементов, который необходим для питания растений. Поэтому наряду с азотными в сельском хозяйстве широко используются фосфорные удобрения. В качестве удобрения можно использовать только водорастворимые соединения. В связи с этим основная задача при производстве фосфорных удобрений — превращение нерастворимого фосфата кальция (основа фосфоритов и апатитов) в растворимые кислые фосфаты.

Важнейшее фосфорное минеральное удобрение – суперфосфат (или простой суперфосфат), который получают обработкой природных фосфоритов серной кислотой:

Образующаяся смесь содержит дигидрофосфат кальция, который хорошо растворим в воде, и сульфат кальция, который не имеет практического значения.

Для получения двойного суперфосфата из природного фосфорита выделяют сначала фосфорную кислоту по реакции:

Затем полученной кислотой обрабатывают новую порцию фосфорита:

Иногда фосфорную кислоту нейтрализуют гидроксидом кальция, при этом получается так называемый преципитат, который тоже является хорошим удобрением:

СаНРО4 плохо растворяется в воде, но достаточно хорошо растворим при внесении его в кислые почвы.

Аммофос

В последнее время широкое распространение получили сложные удобрения, содержащие несколько необходимых растениям элементов.

Важнейшим из них является аммофос, который содержит азот и фосфор и образуется при взаимодействии аммиака и фосфорной кислоты:

Смесь аммофоса с калийной селитрой KNO3 называется аммофоской. Это удобрение содержит все наиболее необходимые растениям питательные элементы – азот, фосфор и калий.

*на изображении записи минерал апатит

Похожее

Добавить комментарий Отменить ответ

О сайте

Добро пожаловать на сайт! Здесь вы найдете самую полную информацию об истории химии и ее развитии как науки, а также интересные статьи о всех химических элементах известных на сегодняшний день и о соединениях, которые они образуют.

Фосфаты в продуктах питания — вред и польза

Сегодня все чаще приходится слышать о фосфатах. О тех самых фосфатах, которые широко используют в сельскохозяйственной промышленности в качестве удобрений, а также в химической промышленности для производства стиральных порошков. Вы удивитесь, но сегодня фосфаты, или, говоря научным языком, соли фосфорных кислот, широко используются и пищевой промышленностью, в результате чего более 80% пищевых продуктов, попадающих на наш стол, содержат эти соединения, о вреде и пользе которых ученые всего мира спорят уже более 50 лет!

Почему же такие сомнительные соединения используются в пищевом производстве, как они влияют на наш организм, и как снизить количество фосфатов в своей пище? На все эти вопросы ответим в данной статье.

Что такое фосфаты

Как мы уже сказали, фосфаты представляют собой соли фосфорных кислот. То есть, это основа фосфора — одного из ключевых макроэлементов, без которого просто невозможна жизнь человека. Макроэлементы — это химические элементы, требуемая суточная доза потребления которых составляет более 200 мг, соответственно микроэлементы — менее 200 мг.

Ключевая роль этого вещества отводится метаболическим процессам, поддержанию функции нервной системы и выработке энергии. Достаточное количество фосфора позволяет своевременно восстанавливать и обновлять мышечную и костную ткань, а также клетки почек и печени. Кроме того, под воздействием солей фосфорной кислоты образуются гормональные соединения и важные для желудка ферменты, нуклеиновые кислоты и витамины группы B. Наконец, достаточное количество фосфора в организме чрезвычайно важно для хорошей наследственности, а значит, если вы хотите иметь здоровое потомство, в вашем рационе обязательно должны присутствовать продукты содержащие фосфаты.

К слову, природа позаботилась об обеспечении нашего организма солями фосфорной кислоты. Для этого необходимо достаточно регулярно употреблять различные виды мяса, рыбы и птицы, зерновые и бобовые культуры (особенно горох и чечевицу), а также всевозможную зелень. При этом, по словам ученых, больше всего фосфора организму дают зерновые и бобовые культуры (оставляют 90% от изначального содержания фосфора), а также животные продукты (70%), а вот растительная пища, богатая клетчаткой, оставляет организму совсем мало фосфора (40%).

Фосфаты в сельскохозяйственной промышленности

О пользе, которую можно извлечь из фосфатов впервые задумались ученые, занятые разработками в сфере народного хозяйства. Учитывая, что фосфор, наряду с калием и азотом, играет фундаментальную роль в развитии живых организмов, не было сомнений в том, что он способен обеспечить жизнедеятельность не только человеческого организма, но и растений. Это подтвердилось на практике. Оказалось, что под действием удобрений, которые начали производить на основе фосфатов, растения гораздо лучше плодоносят и у них формируются здоровые семена.

Сегодня без применения фосфатов просто невозможно представить себе выращивание сельскохозяйственных культур. Нехватка солей фосфора отражается на состоянии растений и их урожайности. Да и в общем смысле недостаток фосфатов приводит к вымиранию полей, лесов и сельских угодий. Без этого макроэлемента земля становится бесполезным дерном!

Фосфаты в химической промышленности

Химическая промышленность тоже не обошла своим вниманием фосфаты. Эти вещества стали одними из ключевых компонентов стиральных порошков, жидких мыл и шампуней, а все благодаря своей способности смягчать воду и продлевать тем самым жизнь бытовых приборов. Более того, фосфаты нашли свое применение в составе зубных паст, так как этот компонент в разы увеличивал качество очистки зубов и их отбеливание.

Правда, с использованием фосфатов в производстве стиральных порошков и прочей бытовой химии, между учеными начались разногласия относительно влияния этих веществ на организм человека. В 60-х годах прошлого века учеными СССР и их западными коллегами были проведены масштабные исследования, причем результаты исследований в точности совпали. В результате на Западе либо ограничили применение фосфатов в продуктах бытовой химии, либо вообще запретили использовать эти вещества (как например, в порошках). А в СССР эти тревожные факты скрыли как от общества, так и от специалистов.

Примечательно, что, по словам западных исследователей, причина вредного влияния чистящих средств на здоровье человека кроется именно в наличии фосфатов, которые вызывают дерматологические заболевания, изменяют процентное содержание гемоглобина в крови, снижают плотность костной ткани, да к тому же нарушают функцию печени, почек (в том числе, образуются камни в почках и желчном пузыре), работу желудочно-кишечного тракта и скелетных мышц!

Фосфаты в пищевой промышленности

Наконец, на фосфаты обратили внимание специалисты, занятые разработками в пищевой промышленности. И здесь данный макроэлемент получил широчайшее распространение, а все благодаря своим уникальным свойствам.

На сегодняшний день фосфаты используют в изготовлении практически любых продуктов. Судите сами:

  • в производстве хлеба — используются в качестве загустителей и стабилизаторов;
  • в производстве сахара — используются для осветления;
  • в масле и маргарине — увеличивают срок хранения продуктов;
  • в плавленых сырках — обеспечивают мягкую консистенцию;
  • в заморозке овощей — сохраняют яркую окраску овоща после размораживания;
  • в консервировании овощей и фруктов — сохраняют плотность и внешний вид продукта;
  • в газированных и слабоалкогольных напитках — используются как подкислители;
  • в сгущенном молоке — препятствуют кристаллизации;
  • в колбасах и сосисках — обеспечивают однородность структуры, препятствуют потере влаги и высыханию;в мясных и рыбных продуктах — удерживают необходимую влагу, консистенцию и объем (мясо с фосфатами, после размораживания дает на 200 г больше веса с каждого килограмма, за счет удержания влаги).
Читайте также:  Роза Кордана - уход и пересадка в саду и домашних условиях

Чем вредны фосфаты для человека

Как мы уже разобрались, без фосфатов невозможна жизнь человека на нашей планете. Это, безусловно, так, но есть одно «но»! Современная промышленность применяет соли фосфорной кислоты буквально везде, что в конечном итоге приводит к избытку этих минеральных веществ в организме человека. Анализ рациона современного человека показал, что на сегодняшний день каждый из нас получает дозу фосфатов, превышающих допустимую норму в 7–10 раз!

Такое избыточное содержание фосфатов неминуемо приводит к смещению баланса фосфора и кальция в организме, который в идеале должен находиться в соотношении 1:1. Чтобы восстановить соотношение, организм начинает забирать недостающий кальций из ближайших источников, в частности, из костей и зубов. Все это вызывает ослабление костной ткани и развитие серьезных заболеваний (у детей — рахит, у взрослых — остеопороз). Именно по причине избыточного количества фосфатов кости человека становятся ломкими и он все чаще подвергается переломам. Это подтверждают и научные исследования, говорящие о том, что более 60% подростков в возрасте до 14 лет имеют низкую плотность костной ткани.

Со временем проблема затрагивает и нервную систему. Особенно это касается подростков, у которых на фоне избытка данных веществ развивается импульсивность, моторное беспокойство, гиперактивность, агрессивность и нарушение концентрации внимания. Еще одним симптомом дисбаланса кальция и фосфора становится нарушение сна, в частности проблемы с засыпанием у подростков. Родители склонны считать такие изменения в психике ребенка наступлением «переходного возраста», в то время как достаточно изменить рацион питания, чтобы подросток стал таким, как прежде!

В результате недавних исследований выяснилось, что чем больше фосфатов находится в крови, тем выше риск инфаркта и возрастает смертность от сердечных болезней. Под действием избытка фосфора развивается кальцификация — отложение на стенках сосудов плотных бляшек из кальция. Опыты на животных показали, что избыток этих веществ в пище негативно влияет на развитие плода и приводит к патологии легких и печени.

Излишки фосфора выводятся из организма почками, а при развитии болезней почек, этот процесс накопления избытка в организме фосфора ускоряется.

Причины избытка фосфора в организме

Как мы уже выяснили, переизбыток фосфатов в организме вызывает много проблем с работой почек и печени, состоянием костной системы, нарушением работы желудочно-кишечного тракта, нервной системы и т.д. К причинам избытка фосфора можно отнести:

  • избыток употребления белковой пищи;
  • употребление большого количества консервов, газированных сладких напитков, лимонадов;
  • нарушение обмена фосфора;
  • длительный контакт с фосфорорганическими соединениями.

Как бороться с избытком фосфатов в организме

Традиции питания людей, проживающих на постсоветском пространстве, таковы, что мы едим больше мяса, чем молочной продукции, а значит, фосфора в наш организм поступает больше, а вот кальция всегда не хватает. Но производители не решают, а лишь усугубляют проблему. К примеру, в 100 г куска говядины содержится примерно 200 мг фосфора, однако на деле, 100 г порция мяса, обработанного фосфатами, содержит сразу 100 мг фосфатов! И это лишь увеличивает баланс фосфора и кальция. А что будет, если запить такой мясной бифштекс бутылочкой «Кока-Кола», дающей организму 40–50% суточной нормы фосфора в день?

А ведь если разобраться, ГОСТа, который бы регламентировал количество фосфатов в продуктах питания, на сегодняшний день не существует. Это значит, что производители и дальше будут «пичкать» этими веществами продукты питания, руководствуясь исключительно увеличением прибыли!

Основной способ снизить количество солей фосфорной кислоты, поступающих в организм — отказаться или хотя бы снизить потребление продуктов, богатых этими веществами. В этом плане всегда смотрите состав продукта, и если окажется, что в нем фосфора более 0,25 мг, не сомневайтесь, фосфаты в него добавили извне.

Снизить количество избытка соединений фосфора помогут продукты, богатые магнием. Этим элементом богаты: черный шоколад, отруби, какао, гречневая крупа, овсянка, сухофрукты (чернослив, финики и изюм), соя и фасоль, и т.д.

Смогут помочь и продукты, богатые гемовым железом. К таким продуктам относится нежирное красное мясо — телятина, язык, телячья печень. Только употреблять их нельзя с ржаным хлебом, так как в нем содержатся вещества, препятствующие усвоению железа.

Для нейтрализации негативного влияния на баланс кальция в организме полезно употреблять больше молочных и кисломолочных продуктов.

Вред от переедания белковой пищей можно снизить употреблением достаточного количества овощей и соблюдением питьевого режима (не менее 2-х литров чистой воды в день).

К слову есть и еще одна зацепка. Все фосфаты имеют специальные коды, по которым можно вычислить, какое именно обозначение имеет тот или иной фосфат. С такими знаниями вам будет гораздо проще распознавать присутствие солей фосфорной кислоты в продуктах питания.

1. Добавка E339 (фосфат натрия) — используется в качестве стабилизатора, регулятора кислотности, антиоксиданта и разрыхлителя. Ее можно обнаружить в хлебе и всевозможных сладостях, мясе, сырах, сухом молоке и продуктах быстрого приготовления.

2. Добавка E340 (фосфат калия) — применяется в качестве влагоудерживающего агента, эмульгатора, регулятора кислотности и фиксатора окраски. Благодаря своим свойствам добавка нашла широкое применение в изготовлении сосисок, колбас и ветчины, а также в обработке куриных окорочков. Кроме того, ее применяют для изготовления чипсов, растворимого кофе и кондитерских изделий, а также для изготовления зубных паст.

3. Добавка E341 (ортофосфат кальция) — применяется в качестве разрыхлителя, стабилизатора, фиксатора краски и регулятора кислотности. Обнаружить добавку можно в спортивных напитках и энергетиках, овощных и фруктовых консервах, плавленом сыре, сухом молоке и сливках.

4. Добавка E342 (фосфат аммония) — является регулятором кислотности, благодаря чему используется в производстве дрожжей.

5. Добавка E343 (фосфат магния) — считается отличным загустителем, стабилизатором консистенции и связующим агентом. Чаще всего добавку применяют для производства сливок и сухого молока.

6. Добавка E450 (пирофосфаты) — зарекомендовала себя в качестве средства, увеличивающего мышечную массу. Благодаря такой особенности добавка широко применяется в изготовлении мясных продуктов и плавленых сыров.

7. Добавка E451 (трифосфаты) — чаще всего используется в качестве эмульгатора жира, благодаря чему ее можно встретить в составе макарон и сухих круп, пастеризованного молока, выпечки и тортов, а также в рыбном фарше и при обработке свежей рыбы.

8. Добавка E452 (полифосфаты кальция, калия и натрия) — вещества, используемые в качестве стабилизаторов и замедлителей химических реакций. Участвуют в производстве чипсов, пакетированного кофе, сосисок, колбас, окорочков и ветчины.

Как можно заметить, список продуктов, которые изобилуют солями фосфорной кислоты, просто огромен. Если регулярно употреблять эти продукты, вы неминуемо столкнетесь с нервными расстройствами и ослаблением костной ткани. Чтобы избежать этого, постарайтесь исключить вредные продукты из своего рациона, а в дополнение к этому, пейте больше молока и кисломолочных продуктов.

Крепкого вам здоровья!

Фосфор

Фосфор (греч. phos – свет + phoros – несущий) – химический элемент, принадлежащий к Vа группе и 3 периоду. Простое желтоватое вещество, легко воспламеняющееся и светящееся.

Основное и возбужденное состояние фосфора

При возбуждении атома фосфора электроны на s-подуровне распариваются и переходят на d-подуровень.

Природные соединения

В промышленности фосфор получают в ходе сплавления фосфата кальция, песка и угля.

Химическая активность фосфора значительно выше, чем у азота. Активность также определяется аллотропной модификацией: наиболее активен белый фосфор, излучающий видимый свет из-за окисления кислородом.

В жидком и газообразном состоянии до 800 °C фосфор состоит из молекул P4. Свыше 800 °C молекулы P4 распадаются до P2.

    Реакции с неметаллами

C неметаллами фосфор часто проявляет себя как восстановитель и окислитель. Легко окисляется кислородом.

Схожим образом происходит взаимодействие фосфора и хлора.

2P + 3Cl2 → 2PCl3 (недостаток хлора)

2P + 5Cl2 → 2PCl5 (избыток хлора)

Реакции с водородом крайне затруднена. Тем не менее, в ходе разложения фосфидов металлов можно получить ядовитый газ – фосфин – боевое отравляющее вещество.

2P + 3Ca → Ca3P2 (фосфид кальция)

Реакция с водой

При взаимодействии с водой фосфор вступает в реакцию диспропорционирования (так называются реакции, в которых одно и то же вещество является и окислителем, и восстановителем).

Реакция с щелочами

При добавлении фосфора в растворы щелочей также происходит реакция диспропорционирования.

При поджигании спичек происходит реакция между фосфором и бертолетовой солью, которая выступает в качестве окислителя.

Оксид фосфора V – P2O5

Кислотный оксид, пары которого имеют формулу P4O10. Твердый оксид характеризуется белым цветом.

Активно реагирует с водой с образованием фосфорной кислоты. При недостатке воды образует метафосфорную кислоту.

Реагирует с основными оксидами и основаниями, образуя соли фосфорной кислоты. Какая именно получится соль – определяет соотношение основного оксида/основания и кислотного оксида.

6KOH + P2O5 = 2K3PO4 + 3H2O (фосфат калия, избыток щелочи – соотношение 6:1)

4KOH + P2O5 = 2K2HPO4 + H2O (гидрофосфат калия, незначительный избыток кислотного оксида – соотношение 4:1)

2KOH + P2O5 = 2KH2PO4 + H2O (дигидрофосфат калия, избыток кислотного оксида – соотношение 2:1)

Обладает выраженным водоотнимающим (дегидратационным) свойством: легко извлекает воду из других соединений.

Фосфорные кислоты

Существует несколько кислородсодержащих фосфорных кислот:

  • Ортофосфорная кислота – H3PO4 (соли – фосфаты PO4 3- )
  • Метафосфорная кислота – HPO3 (соли – метафосфаты PO3 – )
  • Фосфористая – H3PO3 (соли – фосфиты PO3 3- )
  • Фосфорноватистая – H3PO2 (соли гипофосфиты – PO2 3- )

Фосфорноватистая кислота способна вытеснять из солей малоактивные металлы, при этом превращаясь в ортофосфорную кислоту.

Ортофосфорная кислота

В твердом виде представляет собой кристаллы белого цвета, хорошо растворимые в воде.

Фосфорную кислоту получают из фосфатов, воздействуя на них серной кислотой. Также известны способы гидролиза пентахлорида фосфора, взаимодействия оксида фосфора V с водой.

Фосфорная кислота может образоваться при окислении фосфора сильной кислотой:

За счет кислотных свойств отлично реагирует с основными оксидами, основаниями. При различных соотношениях кислоты и основания получаются различные соли (фосфаты, гидрофосфаты и дигидрофосфаты).

Реакции с солями

Реакции идут, если выделяется газ, выпадает осадок или образуется слабый электролит (вода). Например, характерный осадок желтого цвета – фосфат серебра – образуется в результате реакции с нитратом серебра.

В реакции с карбонатами образуется нестойкая угольная кислота, которая распадается на воду и углекислый газ.

Читайте также:  Как прозвонить трансформатор или как определить обмотки трансформатора

Реакции с металлами

Металлы, стоящие в ряду напряжений до водорода, способны вытеснить водород из фосфорной кислоты.

При сильном нагревании ортофосфорная кислота теряет воду и переходит в метафосфорную кислоту.

Соли фосфорной кислоты

Соли фосфорной кислоты получаются в ходе реакции ортофосфорной кислоты и оснований.

Фосфаты являются хорошими удобрениями, которые повышают урожайность. Перечислим наиболее значимые:

  • Фосфоритная мука – Ca3(PO4)2
  • Простой суперфосфат – смесь Ca(H2PO4)2*H2O и CaSO4
  • Двойной суперфосфат – Ca(H2PO4)2*H2O
  • Преципитат – CaHPO4*2H2O
  • Костная мука – продукт переработки костей домашних животных Ca3(PO4)2
  • Аммофос – в основном состоит из моноаммонийфосфата – NH4H2PO4

©Беллевич Юрий Сергеевич

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

ФОСФАТЫ НЕОРГАНИЧЕСКИЕ

ФОСФАТЫ НЕОРГАНИЧЕСКИЕ, соли кислородных к-т фосфора в степени окисления +5 (см. Фосфора кислоты). Существуют ортофосфаты – соли ортофосфорной к-ты H 3 PO 4 и фосфаты конденсированные – соли полифосфорных к-т. Различают средние, кислые и основные фосфаты, разнокатион-ные (двойные и тройные соли) и разноанионные (смешанные соли), оксифосфаты, а также разл. неорг. производные (напр., тиофосфаты). Анионы фосфатов неорганических построены из тетраэдров PO 4 с атомами О в вершинах. Ортофосфаты состоят из изолирован ных тетраэдров, в конденсированных фосфатах неорганических тетраэдры связаны в кольца или цепочки через общие вершины.

Кислые фосфаты неорганические образуются в результате частичной нейтрализации H 3 PO 4 или полифосфорных к-т основаниями. При полной нейтрализации гидроксидами одного или неск. металлов получают средние фосфаты неорганические- соотв. одного металла или двойные фосфаты неорганические. Смешанные соли образуются при нейтрализации смеси к-т, напр. ди- и трифосфорных, одним гидроксидом (ординарные разноанионные фосфаты неорганические) или неск. гидроксидами (разнокатионно-разноанионные фосфаты неорганические). Нейтрализующим агентом служит и NH 3 . Конденсированные фосфаты неорганические получают также термич. обработкой кислых фосфатов неорганических, смесей фосфатов неорганических. При этом состав исходного продукта (в пересчете на оксиды) должен отвечать составу синтезируемого соединения (О

Ортофосфаты встречаются в природе в виде минералов (известно ок. 190), важнейшие из них – апатит и фосфориты (см. также Фосфор).

Средние фосфаты неорганические. Общее св-во безводных солей – стабильность при нагр. до т-ры плавления. Ортофосфаты М II 3 (РО 4 ) 2 плавятся при 1375 (M = Mg), 1777 (Ca), 1600 (Sr), 1605 (Ba), 1152 (Mn), 1345 (Ni), 1060 (Zn), 1014 0 C (Pb), дифосфаты M II 2 P 2 O 7 – при 1382 (Mg), 1355 (Ca), 1375 (Sr), 1430 (Ba), 1195 (Mn), 1400 (Ni), 1020 (Zn), 830 0 C (Pb). Исключение составляют неустойчивые фосфаты неорганические (с катионами NH + 4 , Hg 2+ ), напр. Hg 3 (PO 4 ) 2 , из к-рого часть ртути улетучивается ниже т-ры плавления. В противоположность ортофосфатам конденсированные фосфаты неорганические P n при плавлении превращаются в фосфатные смеси Р т .

Кристаллогидраты мн. ортофосфатов и нек-рых конденсированных фосфатов неорганических при нагр. теряют кристаллизационную воду ступенчато без изменения состава аниона. На этом св-ве основан топохим. способ синтеза безводных солей, к-рые не удается получить др. способами. Так, топохим. путем из (NH 4 ) 5 P 3 O 10 ·хH 2 O, где х=I, 2, в среде газообразного NH 3 получен кристаллич. (NH 4 ) 5 P 3 O 10 . Средние фосфаты неорганические металлов в высоких степенях окисления не раств. в воде, щелочных металлов и аммония – раств., их водные р-ры имеют рН > 7. Анионы конденсированных фосфатов неорганических не стабильны в водных р-рах, они последовательно превращаются в анионы низших фосфатов неорганических.

Кислые и основные фосфаты неорганические. Р-римость в воде кислых и основных фосфатов неорганических выше, чем у средних, в р-р переходят даже нек-рые соли металлов в высоких степенях окисления. Благодаря этому св-ву кислые фосфаты неорганические используют в качестве удобрений. При рН 7). При нагр. в результате конденсации кислые соли меняют анионный состав ниже т-ры плавления, благодаря чему они служат исходными соед. для получения мн. конденсированных фосфатов неорганических.

Помимо гидро- и дигидроортофосфатов щелочных металлов известны кристаллич. кислые ортофосфаты: M II HPO 4 , где M = Be, Mg, Ca, Sr, Ba, Mn, Zn, Cd, Sn, Pb, Hg, их кристаллогидраты с одной молекулой воды (M = Be, Mg, Cu, Zn), двумя (Ca, Со, Ni), тремя (Mg, Mn, Zn) и семью (Mg); M II (Н 2 РО 4 ) 2 , где M = Mg, Sr, Ba, Cu, Cd, Sn, Pb, их кристаллогидраты с одной молекулой воды (M = Ca, Sr), двумя (Mg, Mn, Fe, Со, Ni, Zn, Cd) и четырьмя (Mg); содержащие неск. анионных форм: Со(Н 2 РО 4 ) 2 ·2H 3 PO 4 , NaH 2 PO 4 ·Na 2 HPO 4 (используется при получении триполифосфата Na). Получены дигидродифосфаты M II 2 H 2 P 2 O 7 , где M = Ca, Sn, Ba, Mn, Fe, Со, Ni, Zn, Pb; кислые трифосфаты M I 3 H 2 P 3 O 10 ·1,5H 2 O, где M = Na, Rb; M II 2 HP 3 O 10 , где M = Ca, Pb; M III H 2 P 3 O 10 , где M = Al, Cr, Fe, а также их моно-, ди- и тригидраты.

Кристаллич. тригидрофосфат K 2 H 3 P 3 O 10 ·2H 2 O отличается от гидро- и дигидрофосфатов способностью менять консистенцию при мех. активации и превращаться в пластилино-подобную массу. Эффект связан с диспропорционированием, к-рое в кислых солях разл. металлов проявляется по-разному. При вьщерживании кристаллов MnHPO 4 ·3H 2 O во влажной среде в их объеме возникают и растут жидкие и твердые включения продуктов распада исходной кислой соли на менее протонированную соль и свободную к-ту:

, град

град

град

Na 3 PO 4 · 12H 2 O

Zn 3 (PO 4 ) 2 ·4H 2 O (гопеит)

Zn 5 (P 3 O 10 ) 2 ·I7H 2 O

Ca 4 P 6 O 19 (тромелит)

Mg 2 P 4 O 12 -I

[Cd(PO 3 ) 2 ] n ·H 2 O

Орторомбич., Р2 1 2 1 2 1

Моноклинная, P2 1

Кислые и основные соли

Na 2 HPO 4 ·2H 2 O

Zn 2 HP 3 O 10 ·6H 2 O

KZn 2 H(PO 4 ) 2 ·2,5H 2 O

Mn 2 Zn(PO 4 ) 2 ·4H 2 O

NH 4 BeP 3 O 10

NH 4 Zn 2 P 3 O 10 ·7H 2 O

Na 3 Mg 2 P 5 O 16

Ba 2 Zn 3 P 10 O 30

[K 2 Pb(PO 3 ) 4 ] n ·H 2 O

K 2 Ni 4 (PO 4 ) 2 (P 2 O 7 )

NH 4 Cd 6 (P 2 0 7 ) 2 (P 3 0 10 )

BaP 2 O 7 ·B 2 O 3

Орторомбич., P222 1

Известны прир. основные соли – минералы гидроксиапатит Са 10 (РО 4 ) 6 (ОН) 2 , вавеллит А1 3 (РО 4 ) 2 (ОН) 3 ·5Н 2 О, бирюза СuА1 6 (РО 4 ) 4 (ОН) 8 ·5Н 2 О. Синтезированы основные фосфаты неорганические типа Со 5 (Р0 4 ) 2 (ОН) 4 , Cu 2 PO 4 (OH), In 2 P 3 O 10 (OH)·9H 2 O.

Разнокатионные фосфаты неорганические. Содержат разноименные катионы металлов и аммония, напр.: KZn 2 H(PО 4 ) 2 ·xH 2 О, где х= О, 2, 5, Na 2 UO 2 HP 3 O 10 , NaPrHP 3 O 10 ·3H 2 O, Ni[GePO 4 (HPO 4 )] 2 ·8H 2 O, а также основные фосфаты неорганические- минералы крандаллит СаА1 3 (РО 4 ) 2 (ОН) 5 ·Н 2 О, миллицит (Na, К)СаА1 6 (РО 4 ) 4 (ОН) 9 ·ЗН 2 О. Встречаются в природе в виде продуктов взаимод. анионов фосфорных удобрений и катионов почвенного поглощающего комплекса. При плавлении нейтральных конденсированных фосфатов неорганических образуются смеси, MMP анионов к-рых зависит не только от R, но и от соотношения между разноименными катионами. Ортофосфа-ты плавятся при 921 (M = Li), 1117 (Na), 885 0 C (Ag); дифосфаты – при 773 (Li), 648 (Na), 680 0 C (К); цикл отри фосфаты – при 735 (Li), 800 (Na), 680 0 C (Ag). Одна из особенностей фосфатов неорганических этого типа – многообразие изоструктурных рядов с разл. комбинациями разноименных катионов.

Синтез полифосфатов из р-ров солей разноименных катионов имеет специфику, связанную с возникновением вязких фаз, в к-рых происходит быстрая деструкция аниона. Для получения кристаллогидратов эффективен способ подбора скорости кристаллизации, превышающей скорость деструкции. T. обр. синтезированы кристаллич. NH 4 Mg 2 P 3 O 10 ·6H 2 O, NH 4 Mn 2 P 3 O 10 ·5H 2 O, отличающиеся по св-вам от известных аморфных соотв. гепта- и гексагидратов.

Применяют топохим. синтез, основанный на дегидратации кристаллогидратов, взаимод. безводных солей с парами воды, кислых солей с газообразным NH 3 . Аммонизацией предварительно активированного KZn 2 H(PО 4 ) 2 ·2,5H 2 О получена тройная соль KZn 2 N H 4 (PО 4 ) 2 ·0,6H 2 О. Безводные двойные и тройные соли обычно получают кристаллизацией из расплава или термич. обработкой соответствующих смесей. Так, перечисленными способами синтезированы , где M = Li, Na, NH 4 ; , где M = К, Rb, Cs, Tl, NH 4 ; где M = Na, К, Cs, Ag; M 1 Ba 2 (PO 3 ) 5 , где M = Li, Cs, Na 3 Mg 2 P 5 O 16 и др.

Разноанионные фосфаты неорганические (смешанные соли). Разноименными м. б. анионы к-т фосфора (напр., и , и ), включая соед. P в низших степенях окисления (анионы изомеров H 4 P 2 O 5 ), и др. к-т ( и , и Сl – ). Соли типа Rh 4 (HPO 4 )(PO 4 ) 2 (H 2 O) 12 с анионами разл. степени про-тонизации относят к кислым фосфатам неорганическим, в к-рых вследствие дис-пропорционирования возможно сосуществование неск. анионных форм. Кристаллич. соль NH 4 Cd 6 (P 2 O 7 ) 2 (P 3 О 10 ) получена гидротермальным синтезом; KSr 3 (PO 4 )(SO 4 ) 2 – при нагр. смеси фосфата неорганического и сульфата. Известны Ва 10 (РО 4 ) б Х 2 , где X = F, Cl; , где M = La, Nd и др.

Оксифосфаты . Для этих соед. M II O:P 2 O 5 =10:3, 4:1, 5:1, 8:1. Получают их взаимод. твердых или расплавленных компонентов при заданном значении R. Соли типа, или , где M = Ca, Sr, Ba, образуют изоструктурный ряд с соед. и . В оксифосфате Cu 4 P 2 O 9 структурный каркас образован параллельно ориентированными слоями атомов Cu и О, между к-рыми расположены атомы P. Оксифосфаты высокоплавки, напр. Sr 4 P 2 O 9 плавится при 1600 ? С, Сu 5 О 2 (РО 4 ) 2 – при 920 0 C. В системе K 3 PO 4 -MgO выделен K 6 MgP 2 O 9 , или 2K 3 PO 4 ·MgO, с т. пл. 1570 0 C.

Неорганические производные фосфатов неорганических. Замещением в конденсированных фосфатах неорганических концевых атомов О атомами S получают тиофосфаты, напр. монотиотрицикло-фосфат Na 3 P 3 O 8 S· 6H 2 O, тетратиотетрациклофосфаты M II 2 P 4 O 8 S 4 · 10H 2 O, где M = Sr, Ba, а присоединением групп SO 3 к концам цепи – сульфатофосфаты ф-лы I, где M = Na, n — 3-25. При замене мостиковых и концевых атомов О ионов P 3 O 5- 10 соотв. амидо- и имидогруппами образуются ионы дии-мидо-(П) и амидоимидотрифосфаты (Ш). Известны силика-то-, хромато-, ванадато- и арсенатофосфаты типа Na 3 H 2 (P, As) 3 O 10 (IV) и др. Фторотрифосфат-ион (V) благодаря смещению положит, заряда рециклизуется при рН > 7 с образованием трициклофосфат-иона.

Лит.: Самускевич В. В. [и др.], “Изв. АНБССР. Сер.хим. наук”, 1984, № 1, с. 47-51; № 2, с. 41-46; Продан E.А., Неорганическая топохимия, Минск, 1986, с. 52-72; Констант З.А., Диндуне А. П., Фосфаты двухвалентных металлов, Рига, 1987; Щегров Л. H., Фосфаты двухвалентных металлов, К., 1987; Melloг J., Comprehensive treatise on inorganic and theoretical chemistry, v. 8, suppl. Ш, N. Y., 1972, p. 1467. Е. А Продан.

Ссылка на основную публикацию